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1. Introduction
Visual segmentation is a core function of biological
vision:

I involves Gestalt principles, e.g. grouping by
similarity, proximity and good continuation [1]

I visual cortical neurons are sensitive to those
cues [2]

Purpose: to compare the prediction of different models
to human performance

Feedforward models: comparing the local summary
statistics of low-level visual features [3, 4].
Alternative view: perceptual segmentation emerges
from probabilistic inference.

To do that:
I we propose a new protocol to measure

segmentation maps and variability
I we measured segmentation maps of composite

artificial images

2. Measure
A new task to measure segmentation maps:

I Ask the participant to decompose the image in
K segments

I Show the image for 3 s

I Run a sequence of M trials: does the pair belong
to the same segment ?

Figure 1: Experiment trial layout

3. Reconstruction
For any response model pi,j(Θ), the MLE estimate is

Θ̂ = argmin
Θ

∑
(i,j)∈P

||ri,j − pi,j(Θ)||2 + reg. (1)

I ri,j is the empirical
average response

I Θ is the model
parameter

Let pik being the probability that pixel i belongs to
segment k, then

pi,j(Θ) = 〈pi, pj〉 = pi1pj1 + · · ·+ piKpjK .
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Figure 2: Segmentation map of a natural image and
probability of assignment to each segment, obtained
with our protocol

4. Models

(i) a non-parametric model [Θ = ((pi)i, α)]

pi,j(Θ) = α+ (1− 2α)〈pi, pj〉 (NP)
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I assumes the existence of underlying
probability maps

I pi = (pi1, . . . , piK) with pik being the
probability that pixel i belong to segment k

I α: lapse rate

(ii) generative model (optimal observer) [Θ = (Λ, α)]

pi,j(Θ) = α+ (1− 2α)〈p(xi|Λ), p(xj|Λ)〉 (GM)
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I assumes the probability maps are
obtained via probabilistic inference

I pk(x|Λ) ∝ exp
(
−x

TΛkx
2

)
w/ Λk = (Σk + σ0I)−1

I Σk, σ0: feature covariance and
internal noise

(iii) feedforward discrimininative model [Θ = (W,µ, σ, α)]

pi,j(Θ) = α+ (1− 2α)Sσ,µ (cosW (xi, xj)) (FD)
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I assumes that local features
are directly compared I Sσ,µ(u) =

(
1 + exp

(
− 1
σ

(
log
(

u
1−u

)
− µ

)))−1 I µ, σ: subjective eq.
and inverse sensitivity

5. Segmentation Results (4 participants)
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Figure 3: High and low
uncertainty stimuli.
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Figure 4: Fit quality (cross-
val. negative log-lkl, lower is
better). Rdm: chance level.
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Figure 5: Average entropy.
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Figure 6: Average entropy
for edge and non-edge areas
obtained with NP model. Error
bars: 99.7% conf. interval.

I manipulating the orientation and
spatial frequency distributions of
the textured segments changes the
segmentation uncertainty – Figure 3

I the probabilistic inference model (GM)
explains the data better than the feature
discrimination model (FD) – Figure 4

I variability of human segmentation
correlates with image uncertainty –
Figure 5

I GM captures the variability that is
intrinsic to image uncertainty, differences
with NP account for other factors such as
measurement noise and inter-participants
variability – Figure 5

I variability is concentrated around
edges, this effect is stronger for low
uncertainty stimuli (blue) where edges
are more spatially localized – Figure 6

6. Manipulating Edge Uncertainty
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Figure 7: Local distributions of features
around an edge
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I Edges correspond to jumps of local feature distributions

These jumps are harder to perceive when:

I the distributions are largely overlapping (large
bandwidth, top of Figure 7)

I the 1st distribution changes continuously over space
towards the 2nd one (edge width, bottom of Figure 7 and
Figure 8)

We measured the sensitivity to detect the presence of a vertical
edge in an image in a 2AFC (2 images presented side by side).
We varied both the edge width and the bandwidth. A trial
example is given in Figure 9.

Figure 8: Example of narrow and wide edges
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Figure 9: Trial example

Results (pilot, 1 participant):

I no global trend in threshold

I approximately constant sensitivity
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Figure 10: Psychometric function (40 samples)

7. Summary

I we propose a new protocol to study natural
image segmentation

Using artifitial composite textures, we have
found that:

I the generative model accounts better for the
data than the discriminative model

I human variability correlates with image
uncertainty

I variability is localized around edges
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