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1. INTRODUCTION

Visual segmentation is a core function of biological
vision:

Feedforward models: comparing the local summary
statistics of low-level visual features |3, 4].

Alternative view: perceptual segmentation emerges
from probabilistic inference.

To do that:
we propose a new protocol to
segmentation maps and variability
we measured segmentation maps of composite
artificial images

involves Gestalt principles, e.g. grouping by
similarity, proximity and good continuation |1]

visual cortical neurons are sensitive to those

| measure
cues |2]

Purpose: to compare the prediction ot different models
to human performance

4. MODELS
(1) a non-parametric model |© = ((p;)i, )] Di, D; s Di;
pi,j(©) = a+ (1 — 2a)(pi, p;) (NP) pattern recog. judgement
comparison
assumes the existence of underlying pi = (Pi1,---,Pir) With p;. being the a: lapse rate

probability maps probability that pixel i belong to segment k

(11) generative model (optimal observer) |© = (A, a)]

Pij(©) = o+ (1 = 2a)(p(zi|A), p(z;|A))
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pattern recog.

, judgement
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image features
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assumes the probability maps are
obtained via probabilistic inference

>, 0g: feature covariance and
internal noise

(111) feedforward discrimininative model |© = (W, u, o, )] i, T; s cosw(--) —> Pij

Pij(©) = a+ (1 — 20)S,,,, (cosw (i, 5)) (FD) judgement

image features comparison

Sou() = (1 + exp (_% (log (ﬁ) - N)))—l

5. SEGMENTATION RESULTS (4 PARTICIPANTS)

assumes that local features
are directly compared
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explains the data better than the feature
discrimination model (FD) — Figure 4
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Figure 5: Average entropy.

variability of human segmentation
correlates with image uncertainty —
Figure 5

Figure 3: High and low
uncertainty stimuli.

NE: non-edge i

i with NP account for other factors such as
measurement noise and inter-participants
variability — Figure 5
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variability is concentrated around
edges, this effect is stronger for low
uncertainty stimuli (blue) where edges
are more spatially localized — Figure 6

Figure 6: Average entropy
for edge and non-edge areas
obtained with NP model. Error

bars: 99.7% conf. interval.

Figure 4: Fit quality (cross-
val. negative log-lkl, lower is
better). Rdm: chance level.
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3. RECONSTRUCTION
For any response model p; ;(©), the MLE estimate is

2. MEASURE

A new task to measure segmentation maps:

Ask the participant to decompose the image in O : 2

= argmin E ris — D (O)]° + reg. 1
K segments S S 71,5 — i, (O)] g (1)
Show the image for 3 s ri; 1s the empirical ® is the model

average response
Let pj. being the probability that pixel 1 belongs to
segment £, then

pi;j(©) = (pi, p3) = Pi1Pj; + - + PikDjr-

Run a sequence of M trials: does the pair belong parameter

to the same segment 7
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Figure 2: Segmentation map of a natural image and
probability of assignment to each segment, obtained
with our protocol

Figure 1: Experiment trial layout

6. MANIPULATING EDGE UNCERTAINTY

Edges correspond to jumps of local feature distributions

These jumps are harder to perceive when: = éJ
the distributions are largely overlapping (large Z 005 out %‘
bandwidth, top of Figure 7) S model | 2.
the 15* distribution changes continuously over space 0.00~ ' :T
towards the 2°¢ one (edge width, bottom of Figure 7 and = ot \ NN NN oot ;é
Figure 8) Z 0057 — ioht inour |©
We measured the sensitivity to detect the presence of a vertical ~ model é
edge in an image in a 2AFC (2 images presented side by side). 0.00 - _JVVV VLN =
—100 0 100

We varied both the edge width and the bandwidth. A trial

example is given in Figure 9. Orientation (deg.)

Figure 7: Local distributions of features
around an edge

Results (pilot, 1 participant):

no global trend in threshold

approximately constant sensitivity
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Figure 10: Psychometric function (40 samples)

Figure 9: Trial example
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7. SUMMARY

we propose a new protocol to study natural
1mage segmentation

Using artifitial composite textures, we have
found that: 9.

the generative model accounts better for the
data than the discriminative model
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