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Abstract

We propose algorithms for filtering real-valued images, when the filter is provided as a contin-
uous function defined in the Nyquist frequency domain. This problem is ambiguous because
images are discrete entities and there is no unique way to define the filtering. We provide a
theoretical framework designed to analyse the classical and computationally efficient filtering
implementations based on discrete Fourier transforms (DFT). In this framework, the filtering
is interpreted as the convolution of a distribution, standing for the filter, with a trigonometric
polynomial interpolator of the image. The various plausible interpolations and choices of the
distribution lead to three equally licit algorithms which can be seen as method variants of the
same standard filtering algorithm. In general none should be preferred to the others and the
choice depends on the application. In practice, the method differences, which come from the
boundary DFT coefficients, are not visible to the naked eye. We demonstrate that claim on
several experimental configurations by varying the input image and the considered filter. In
some cases however, we discuss how the choice of the variant may affect fundamental properties
of the filtering.

Source Code

The source code and the online demo are accessible at the IPOL web part of this article1. The
C99 implementation of the code that we provide is the one which has been peer reviewed and
accepted by IPOL. It contains two modules : one performs the standard filtering algorithm (Al-
gorithm 1) presented in Section 3 and the other performs the comparison detailed in Section 4.
The comparison module computes for nine filters the filtered images obtained by applying the
three variant methods. For each filter a pairwise comparison of the results is done by computing
the (absolute) difference image, the maximum difference and the mean difference. It creates
fifty-five images: twenty-seven filtered images, twenty-seven difference images and the modulus
of the DFT input in logarithmic scale. See Section 4 and the code documentation for additional
information.
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1 Introduction

The application to images of a filter defined by a continuous function in the frequency domain, more
precisely in the Nyquist domain [−π, π]2, is a well-known problem. Images are discrete entities so
there is no unique way to define the filtering whether it be as a continuous or a discrete convolution.

The definition in the Fourier domain by a continuous function may be handy to impose a given
property to a filter (e.g. low-pass, high-pass or steered filter). Moreover, it covers all the possible
image sizes in a single formula. For instance this is a classical approach used to build multi-scale
structures (e.g. the steerable pyramid of E. Simoncelli et al. [13]).

In practice, the filtering is usually applied by performing discrete Fourier transform (DFT) com-
putations [2, 4, 8] but, to the best of our knowledge, no clear theoretical justification can be found
in the literature. In particular, the interpretations generally involve a trigonometric polynomial in-
terpolation, which is ambiguous for even-sized images, and rely on a convention whose influence on
the boundary DFT coefficients should be taken into account.

The aim of this paper is to give a clear definition, as a continuous convolution, of the filtering
of a discrete real-valued image by a filter specified by a continuous function in the Nyquist domain
[−π, π]2. Additionally, for computational purposes it should be compatible with DFT computations.

With this goal in mind, we interpret the filtering as the convolution of a distribution, standing
for the filter, with a trigonometric polynomial interpolator of the image. The various plausible
interpolations and choices of the distribution lead to three equally licit algorithms which can be seen
as variants of the same standard filtering algorithm. In general none should be preferred to the others
and the choice depends on the application. The method differences, which come from the boundary
DFT coefficients, are not visible to the naked eye in practice. This analysis is illustrated by an
application to several fundamental filters. When necessary, we also discuss the impact of the chosen
method on some desired properties of the filtering (e.g. semi-group property, exact reconstruction).

The remainder of this paper is organized as follows: We present in Section 2 the theory intended
to give a clear interpretation of the filtering of a discrete real-valued image by a filter defined by a
continuous function in the Nyquist domain. It underlies the three proposed algorithms which are
detailed in Section 3. Finally an experimental study with fundamental filter examples is presented
in Section 4.

2 Theoretical Results

In this section, we introduce the theory intended to give a clear interpretation of the filtering of a
discrete real-valued image u by a filter φ defined by a continuous function in the Nyquist domain
[−π, π]2. It is formalized as the convolution between a trigonometric polynomial Pu, associated with
the image u, and a tempered distribution fφ, associated with the filter φ, whose Fourier transform is
continuous on [−π, π]2. This theory is aimed at being consistent with the DFT implementations that
are typical in the literature. In Section 2.2 we propose for Pu two canonical choices of trigonometric
polynomial interpolators of u. Section 2.3 justifies that the convolution between the tempered distri-
bution fφ and the trigonometric polynomial Pu is mathematically well sounded (see Theorem 2). In
Section 2.4, according to the choice of Pu and fφ, we consider three different but equally licit ways
of defining the filtering of discrete images (see Definition 15). The resulting filtered images can be
efficiently obtained by DFT based computations thanks to Proposition 4.

2.1 Definitions and Notations

First we introduce useful definitions and notations.
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How to Apply a Filter Defined in the Frequency Domain by a Continuous Function

Definition 1 (Discrete domains). Let M and N be two positive integers. We define the discrete
spatial domain ΩM,N = {0, . . . ,M − 1} × {0, . . . , N − 1}.
The discrete Fourier domain Ω̂M,N , associated to ΩM,N , is defined by Ω̂M,N = Ω̂M × Ω̂N where, for
a positive integer L, we note

Ω̂L =

{
{−L−1

2
, . . . , L−1

2
} if L is odd,

{−L
2
, . . . , L

2
− 1} if L is even.

The boundary ΓM,N of Ω̂M,N is defined by ΓM,N =
(

ΓM × Ω̂N

)
∪
(

Ω̂M × ΓN

)
where, for a positive

integer L, we note

ΓL =

{
∅ if L is odd,

{−L
2
} if L is even.

The symmetrized discrete Fourier domain Ω̂s
M,N , associated to ΩM,N , is defined by Ω̂s

M,N = Ω̂s
M × Ω̂s

N

where, for a positive integer L, we note

Ω̂s
L =

{
Ω̂L if L is odd

Ω̂L ∪ {L2 } if L is even.

The boundary ΓsM,N of Ω̂s
M,N is defined by ΓsM,N = Ω̂s

M,N \
(

Ω̂M,N \ ΓM,N

)
.

As an example, we display in Figure 1 the discrete domains Ω̂M,N , Ω̂s
M,N , ΓM,N and ΓsM,N for

M = N = 4.

0-1-2 1 2

-2

-1

0

1

2

Figure 1: Discrete domains Ω̂M,N , Ω̂s
M,N , ΓM,N and ΓsM,N for M = N = 4.

Definition 2 (Image). Let M and N be two positive integers. An image u of size M×N is defined as
a two-dimensional finite list of complex numbers (uk,l)(k,l)∈ΩM,N . The image is said to be real-valued
when every number is real.

Definition 3 (Trigonometric polynomial). Let M and N be two positive integers. A function P :

R2 → C is said to be a trigonometric polynomial of degree M × N if there exists c ∈ CΩ̂sM,N , called
coefficients of P , s.t.

∀(x, y) ∈ R2, P (x, y) =
1

MN

∑
(m,n)∈Ω̂sM,N

cm,ne
2iπ(xm

M
+y n

N
). (1)
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The set of trigonometric polynomials of degree M × N , denoted PM,N , is a subset of the set of
(M,N)−periodic functions. Denote R the real part operator and let P ∈ PM,N then R(P ) ∈ PM,N .

Definition 4 (Discrete Fourier transform). Let M and N be two positive integers. The discrete

Fourier transform (DFT) of u ∈ CΩM,N is denoted FM,N(u) ∈ CΩ̂M,N and is defined by

∀(m,n) ∈ Ω̂M,N , FM,N(u)m,n =
∑

(k,l)∈ΩM,N

uk,le
−2πi(km

M
+l n

N
).

The inverse discrete Fourier transform (iDFT) of v ∈ CΩ̂M,N is denoted F−1
M,N(v) ∈ CΩM,N and is

defined by

∀(k, l) ∈ ΩM,N , F−1
M,N(v)k,l =

1

MN

∑
(m,n)∈Ω̂M,N

vm,ne
2πi(m k

M
+n l

N
).

Definition 5 (Fourier transform). The continuous Fourier transform applied to L1(R2) and its
inverse, denoted F and F−1, are defined by

∀u ∈ L1(R2), ∀(ξ, ν) ∈ R2, û(ξ, ν) = F(u)(ξ, ν) =

∫
R2

u(x, y)e−i(xξ+yν)dxdy

and ∀(x, y) ∈ R2, F−1(u)(x, y) =
1

(2π)2

∫
R2

u(ξ, ν)ei(xξ+yν)dξdν.

The Fourier transform extended to tempered distributions [12, 14] is still denoted F .

Definition 6 (Convolution). Let u ∈ L1(R2) and v ∈ L∞(R2). The convolution of u and v, denoted
u ∗ v, is defined by

∀(x, y) ∈ R2, u ∗ v(x, y) =

∫
R2

u(x− s, y − t)v(s, t)dsdt.

2.2 Trigonometric Polynomial Interpolators

Let us construct interpolators of real-valued images (see Definition 2) which are trigonometric poly-
nomials (see Definition 3).

Definition 7 (Trigonometric polynomial interpolator in complex convention). Let M and N be two
positive integers and let u be a real-valued image of size M × N . The trigonometric polynomial

interpolator of u in complex convention is the trigonometric polynomial P
(c)
u ∈ PM,N defined by

∀(x, y) ∈ R2, P (c)
u (x, y) =

1

MN

∑
(m,n)∈Ω̂M,N

FM,N(u)m,ne
2iπ(xm

M
+y n

N
). (2)

Proposition 1. Let M and N be two positive integers and let u be a real-valued image of size M×N .

Then, P
(c)
u interpolates u in the sense that

∀(k, l) ∈ ΩM,N , P (c)
u (k, l) = uk,l.

Proof. It is a direct consequence of the DFT and iDFT formulas. For (k, l) ∈ ΩM,N we have

P
(c)
u (k, l) =

(
F−1
M,N(FM,N(u)

)
k,l

= uk,l.
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How to Apply a Filter Defined in the Frequency Domain by a Continuous Function

Proposition 1 states that the trigonometric polynomial interpolator in complex convention in-
troduced in Definition 7 is an interpolating function. It is the natural and simplest way to define
a trigonometric polynomial interpolator since the coefficients are directly expressed in terms of the
DFT of the image. However it may be complex-valued while the image is real-valued. Thus, we build
another interpolator that is real-valued.

Definition 8 (Trigonometric polynomial interpolator in real convention). Let M and N be two
positive integers and let u be a real-valued image of size M × N . The trigonometric polynomial

interpolator of u in real convention is defined as the trigonometric polynomial P
(r)
u ∈ PM,N whose

coefficients c verify

∀(m,n) ∈ Ω̂s
M,N , cm,n =


FM,N(u)m,n if |m| < M

2
and |n| < N

2
1
2
FM,N(u)−M

2
,n if |m| = M

2
and |n| < N

2
1
2
FM,N(u)m,−N

2
if |m| < M

2
and |n| = N

2
1
4
FM,N(u)−M

2
,−N

2
if |m| = M

2
and |n| = N

2
.

Note that this formulation is valid for both even and odd size parameters (M and N). However, some
of the cases in the disjunction never occur when one or both size parameters are odd2.

Proposition 2. Let M and N be two positive integers and let u be a real-valued image of size M×N .

Then P
(r)
u is a real-valued interpolating function of u since for (x, y) ∈ R2,

P (r)
u (x, y) =

{
R(P

(c)
u )(x, y) + FM,N(u)−M

2
,−N

2
sin(πx) sin(πy) if M and N are even

R(P
(c)
u )(x, y) otherwise.

Proof. This is a consequence of the fact that the DFT of a real sequence has a Hermitian symmetry.
Indeed, extending the DFT by M,N−periodicity we easily get FM,N(u)m,n = FM,N(u)−m,−n for all
(m,n) ∈ Z2. Thus by grouping the terms of the sum in Equation (2) we can deduce that the complex
contribution comes from the terms with indices M

2
or N

2
. For instance if M is even, the result is

obtained by considering relations of the type FM,N(u)−M
2
,n = FM,N(u)−M

2
,−n and grouping terms of

indices (−M
2
, n) and (−M

2
,−n). If M and N are even, we have FM,N(u)−M

2
,−N

2
∈ R and we conclude

using the relation R(e−iπ(x+y)) + sin(πx) sin(πy) = 1
4

(
eiπ(x+y) + e−iπ(x+y) + eiπ(x−y) + eiπ(−x+y)

)
.

Let M and N be two integers and suppose that u is of size M ×N . The coefficients in the two
conventions are potentially different3 only for indices (m,n) ∈ ΓsM,N on the boundary of Ω̂s

M,N i.e.

if |m| = M
2

or |n| = N
2

. In particular, if M and N are odd numbers both conventions match and
there is a unique trigonometric polynomial of degree M × N interpolating u. When M or N is an
even number, the uniqueness is lost. When for instance M is even, one can easily check that the
interpolation property is kept when adding any multiple of the trigonometric polynomial of degree
M ×N defined by (x, y) ∈ R2 7→ sin(πx). Taking the real part of P

(c)
u boils down to correcting the

eventual asymmetry of the DFT coefficients. When M and N are even P
(r)
u is preferred to R(P

(c)
u )

because it has the same coefficients at the four corners of Ω̂s
M,N . Proposition 2 is a reformulation

of Equation (23) in [1]. This interpolation method is said to be DFT based since the coefficients in
both conventions depend on the DFT of u.

2For instance, if M is odd, |m| = M
2 is not possible within Ω̂sM,N

3Actually the polynomial coefficients located at the boundary are equal if and only if they are null.
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2.3 Convolution of Trigonometric Polynomials

In this part we define the convolution between a tempered distribution whose Fourier transform is
a continuous function on [−π, π]2 and a trigonometric polynomial. This convolution will be used
in Section 2.4 to define the filtering of an image. The distribution will represent the filter and the
trigonometric polynomial the image. To do this we extend known results on the set of integrable
functions. As a trigonometric polynomial is bounded, its convolution with an integrable function is
well-defined (see Definition 6).

Theorem 1 (Convolution theorem 1 [7]). Let M and N be two positive integers. Let f ∈ L1(R2)
and P ∈ PM,N with coefficients c. Then, f ∗ P ∈ PM,N and verifies

∀(x, y) ∈ R2, (f ∗ P )(x, y) =
1

MN

∑
(m,n)∈Ω̂sM,N

f̂

(
2πm

M
,
2πn

N

)
cm,ne

2iπ(xm
M

+y n
N

).

Theorem 1 states that this convolution is also a trigonometric polynomial whose coefficients
depend on the values of the Fourier transform of the integrable function on [−π, π]2 and the trigono-
metric polynomial coefficients. We now want to extend this result to the wider set of distributions
defined as follows.

Definition 9. A distribution T of the plane is said to be continuous on [−π, π]2 when its restriction4

T|]−π,π[2 is a function of ]−π, π[2 admitting a continuous extension to [−π, π]2. By construction, this
extension is unique.

Definition 10. We define CFπ as the subspace of tempered distributions of the plane whose Fourier
transforms are continuous on [−π, π]2 (in the sense of Definition 9).

Note that we have L1(R2) ⊂ CFπ since the Fourier transform of an integrable function is contin-
uous on R2. As the extension of the convolution to CFπ will only depend on the Fourier transforms
of the distributions on [−π, π]2 we consider the following equivalence relation and quotient space.

Definition 11. We define the equivalence relation R on CFπ by

fRg ⇔ f̂ = ĝ on [−π, π]2.

The set of equivalence classes is denoted 〈CFπ〉 and the equivalence class of f ∈ CFπ is denoted 〈f〉.
We define on the vectorial space 〈CFπ〉 the norm N : 〈CFπ〉 → R+ by

∀〈f〉 ∈ 〈CFπ〉, N(〈f〉) = sup
[−π,π]2

|f̂ |.

The equivalence classes which admit an integrable representative play a special role since we have
the following density result.

Proposition 3. Let 〈L1(R2)〉 = {〈f〉 ∈ 〈CFπ〉 | f ∈ L1(R2)}. Then 〈L1(R2)〉 is dense in (〈CFπ〉, N).

Proof. Let 〈f〉 ∈ 〈CFπ〉. Starting from the definitions of CFπ and 〈CFπ〉 we can easily build g ∈ CFπ
such that 〈g〉 = 〈f〉 and ĝ is a continuous function on R2. Now let (hn)n∈N be a sequence of Schwartz
functions (on R2) that converges uniformly to ĝ on [−π, π]2. Then for each n ∈ N, gn = F−1(hn) is
also a Schwartz function and thus is in L1(R2). By construction, (〈gn〉)n∈N ∈ 〈L1(R2)〉N and converges
in the norm N to 〈g〉 = 〈f〉.

4Note that we can define distribution restrictions only on open sets.
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How to Apply a Filter Defined in the Frequency Domain by a Continuous Function

Starting from Theorem 1 we can define the convolution between an element of 〈L1(R2)〉 and a
trigonometric polynomial.

Definition 12. Let M and N be two positive integers and let P ∈ PM,N with coefficients c. Let
〈f〉 ∈ 〈L1(R2)〉. We define the convolution of 〈f〉 and P , still denoted 〈f〉 ∗ P , as the trigonometric
polynomial of degree M ×N verifying

∀(x, y) ∈ R2, (〈f〉 ∗ P )(x, y) =
1

MN

∑
(m,n)∈Ω̂sM,N

f̂

(
2πm

M
,
2πn

N

)
cm,ne

2iπ(xm
M

+y n
N

).

This definition is compatible with the classical definition of the convolution given in Definition 6.
It is extended to 〈CFπ〉 in the following theorem.

Theorem 2 (Convolution theorem 2). Let M and N be two positive integers and P ∈ PM,N . The
bounded linear transformation TP : 〈f〉 ∈ (〈L1(R2)〉, N) 7→ 〈f〉 ∗ P ∈ (PM,N , ‖.‖∞) can be uniquely
extended to a bounded linear transformation T̃P : (〈CFπ〉, N)→ (PM,N , ‖.‖∞).

Let 〈f〉 ∈ 〈CFπ〉 then T̃P (〈f〉) is called the convolution of 〈f〉 and P . It is denoted 〈f〉 ∗ P and
verifies

∀(x, y) ∈ R2, (〈f〉 ∗ P )(x, y) = T̃P (〈f〉)(x, y) =
1

MN

∑
(m,n)∈Ω̂sM,N

f̂

(
2πm

M
,
2πn

N

)
cm,ne

2iπ(xm
M

+y n
N

),

where c denotes the coefficients of P . The convolution of f ∈ CFπ with a trigonometric polynomial
P , still denoted f ∗ P , is then defined by f ∗ P = 〈f〉 ∗ P .

Proof. The transformation TP is clearly linear and is bounded since

∀〈f〉 ∈ 〈CFπ〉, ‖TP (〈f〉)‖∞ ≤
1

MN

∑
(m,n)∈Ω̂sM,N

∣∣∣∣f̂ (2πm

M
,
2πn

N

)
cm,n

∣∣∣∣ ≤
 1

MN

∑
(m,n)∈Ω̂sM,N

cm,n

N(〈f〉).

As (PM,N , ‖.‖∞) is a complete normed linear space and 〈L1(R2)〉 is dense in (〈CFπ〉, N) (see Propo-
sition 3) then the bounded linear transformation (B.L.T) theorem [10, p. 9] states that TP can be
uniquely extended to a bounded linear transformation T̃P : (〈CFπ〉, N)→ (PM,N , ‖.‖∞).

Let 〈f〉 ∈ 〈CFπ〉 and consider a sequence (〈fk〉)k∈N ∈ 〈L1(R2)〉N that converges to 〈f〉 in norm
N . Define

g〈f〉,P : (x, y) ∈ R2 7→ 1

MN

∑
(m,n)∈Ω̂sM,N

f̂

(
2πm

M
,
2πn

N

)
cm,ne

2iπ(xm
M

+y n
N

).

Then, ∥∥〈fk〉 ∗ P − g〈f〉,P∥∥∞ ≤ 1

MN

∑
(m,n)∈Ω̂sM,N

∣∣∣∣(f̂ − f̂k)(2πm

M
,
2πn

N

)
cm,n

∣∣∣∣
≤

 1

MN

∑
(m,n)∈Ω̂sM,N

|cm,n|

N(f − fk)

−→
k→∞

0.

Thus by continuity we have T̃P = g〈f〉,P .

Therefore, Theorem 2 provides a sound definition for the convolution of a tempered distribution
whose Fourier transform is continuous on [−π, π]2 with a trigonometric polynomial. The resulting
distribution is itself also a trigonometric polynomial. It is also interesting to point out that this
convolution is entirely independent from the distribution of f̂ outside [−π, π]2.
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2.4 Discrete Image Filtering

Thanks to Theorem 2 we can define the filtering of discrete real-valued images. A continuous function
on [−π, π]2 is sufficient to define a filter. Let φ : [−π, π]2 → C, then in the rest of the paper we will
indistinctly refer to φ as a function that defines a filter and the filter itself.

Definition 13. Let φ : [−π, π]2 → C be a continuous function. We denote by fφ any element of the
equivalence class {

f ∈ CFπ | f̂ = φ on [−π, π]2
}
.

In Definition 13 we introduce fφ as any representative of the equivalence class of tempered dis-
tributions whose Fourier transforms are equal to the filter φ on [−π, π]2. The filtering of real-valued
images by φ can be defined as the convolution5 of fφ with trigonometric polynomial interpolators of
the images. The choice of the interpolation convention provides two equally licit definitions of the
filtering. A third one is obtained by considering a slight modification of the filter that removes the
ambiguity due to the Fourier coefficients located at the boundary of the Nyquist domain.

Definition 14. Let M and N be two positive integers and φ : [−π, π]2 → C be a continuous function.
We define the continuous function φM,N : [−π, π]2 → C by

∀(µ, ν) ∈ R2, φM,N(µ, ν) = φ(µ, ν)lM(|µ|)lN(|ν|)

where, for a positive integer L, we note

lL : x ∈ [0, π] 7→

{
1 if 0 ≤ x ≤ π − 1

L

L(π − x) if π − 1
L
< x ≤ π.

As an example, we display in Figure 2 the continuous piece-wise linear function lL near π for L = 32.

3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.14 3.15
0

0.2

0.4

0.6

0.8

1

x

l 32
(x

)

1

0.8

0.6

0.4

0.2

0
3.06 3.08 3.1 3.12 3.143.04

Figure 2: The continuous piece-wise linear function lL near π for L = 32.

Let M and N be two positive integers. The function φM,N introduced in Definition 14 is con-

structed so that for (m,n) ∈ Ω̂s
M,N ,

φM,N

(
2πm

M
,
2πn

N

)
=

{
φ
(

2πm
M
, 2πn
N

)
if |m| < M

2
and |n| < N

2

0 if (m,n) ∈ ΓsM,N .

5We recall that this convolution does not depend on the choice of the representative fφ.
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This entails that for any image u of size M ×N we have fφM,N ∗ P
(c)
u = fφM,N ∗ P

(r)
u . It allows us to

define the filtering of real-valued images as below.

Definition 15 (Filtering real-valued images). Let φ : [−π, π]2 → C be a filter. Let M and N be two
positive integers and u be a real-valued image of size M ×N .

1. The filtering φ1(u) of u by φ in complex convention is defined as the convolution

φ1(u) = fφ ∗ P (c)
u .

2. The filtering φ2(u) of u by φ in real convention is defined as the convolution

φ2(u) = fφ ∗ P (r)
u .

3. The windowed filtering φ3(u) of u by φ is defined as the convolution

φ3(u) = fφM,N ∗ Pu

where Pu can be taken indifferently as P
(c)
u or P

(r)
u .

Let j ∈ {1, 2, 3}. The filtered image φj(u) is defined as the image canonically associated to the

filtering φj(u) i.e
φj(u) = (φj(u)(k, l))(k,l)∈ΩM,N

.

In Definition 15 the three proposed results for the filtering of an image u by the filter φ are
trigonometric polynomials whose coefficients depend on samples of φ and on the DFT of u. Applying
Theorem 2 we see that their coefficients only differ at the boundary ΓsM,N of Ω̂s

M,N . In particular
when M and N are odd numbers, the three definitions are equivalent.

Now let us present how the resulting filtered images can be obtained by using DFT computations.

Definition 16 (Spectral samples). Let φ : [−π, π]2 → C be a filter. Let M and N be two positive
integers.

1. The spectral samples (S1,M,N
m,n )(m,n)∈Ω̂M,N

of size M × N in the complex convention are defined

for all (m,n) ∈ Ω̂M,N by

S1,M,N
m,n = φ

(
2πm

M
,
2πn

N

)
. (3)

2. The spectral samples (S2,M,N
m,n )(m,n)∈Ω̂M,N

of size M × N in the real convention are defined for

all (m,n) ∈ Ω̂M,N by

S2,M,N
m,n =


φ(2πm

M
, 2πn
N

) if (m,n) /∈ ΓM,N

1
2

(
φ(−π, 2πn

N
) + φ(π, 2πn

N
)
)

if m = −M
2
, n 6= −N

2
1
2

(
φ(2πm

M
,−π) + φ(2πm

M
, π)
)

if m 6= −M
2
, n = −N

2
1
4

(φ(−π,−π) + φ(π,−π) + φ(−π, π) + φ(π, π)) if m = −M
2
, n = −N

2
.

(4)

3. The spectral windowed samples (S3,M,N
m,n )(m,n)∈Ω̂M,N

of size M × N are defined for all (m,n) ∈
Ω̂M,N by

S3,M,N
m,n =

{
φ(2πm

M
, 2πn
N

) if (m,n) /∈ ΓM,N

0 if (m,n) ∈ ΓM,N .
(5)
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Proposition 4. Let φ : [−π, π]2 → C be a filter. Let M and N be two positive integers and u be
a real-valued image of size M × N . Let j ∈ {1, 2, 3}. Then, the DFT of the filtered image φj(u) is

given for all (m,n) ∈ Ω̂M,N by

FM,N

(
φj(u)

)
m,n

= Sj,M,N
m,n FM,N(u)m,n.

Proof. We carry the proof for all three cases in turn.

Complex convention : With Theorem 2 and Definition 13 we have for (x, y) ∈ R2,

φ1(u)(x, y) = (fφ ∗ P (c)
u )(x, y) =

1

MN

∑
(m,n)∈Ω̂M,N

φ

(
2πm

M
,
2πn

N

)
FM,N(u)m,ne

2iπ(xm
M

+y n
N

)

=
1

MN

∑
(m,n)∈Ω̂M,N

S1,M,N
m,n FM,N(u)m,ne

2iπ(xm
M

+y n
N

).

We conclude by evaluating at (x, y) = (k, l) ∈ ΩM,N .

Real convention : Similarly we have for (x, y) ∈ R2,

φ2(u)(x, y) = (fφ ∗ P (r)
u )(x, y) =

1

MN

∑
(m,n)∈Ω̂sM,N

φ

(
2πm

M
,
2πn

N

)
cm,ne

2iπ(xm
M

+y n
N

)

where the coefficients c are given in Definition 8. Using the partition Ω̂s
M,N = Ω̂M,N\ΓM,NtΓsM,N

we get

φ2(u)(x, y) =
1

MN

 ∑
(m,n)∈Ω̂M,N\ΓM,N

+
∑

(m,n)∈ΓsM,N

φ

(
2πm

M
,
2πn

N

)
cm,ne

2iπ(xm
M

+y n
N

).

Now let (x, y) = (k, l) ∈ ΩM,N . By using the simple identity e2iπ j
L
L
2 = (−1)j = e2iπ j

L
−L
2 , we can

perform a straightforward identification of the DFT coefficients of the boundary ΓM,N .

Windowed filtering : The proof is similar to the complex convention one by replacing φ
(

2πm
M
, 2πn
N

)
by 0 for (m,n) ∈ ΓM,N .

As stated in Proposition 4, the filtered image (see Definition 15) can be characterized by its DFT
which is the element-wise product of the DFT of the image u and the spectral samples (introduced in
Definition 16). This observation underlies the efficient FFT based algorithm presented in Section 3.

3 Algorithms

In this section we propose three filtering algorithms taking as inputs a discrete image u and a filter
specified by a continuous function φ defined on the Nyquist domain [−π, π]2. They are presented as
three variants of Algorithm 1, namely the common standard filtering algorithm, as follows:

• Method 1: Filtering in complex convention.
The spectral samples are the S1,M,N given by Equation (3).
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• Method 2: Filtering in real convention.
The spectral samples are the S2,M,N given by Equation (4).

• Method 3: Windowed filtering.
The spectral samples are the S3,M,N given by Equation (5).

We summarize in Table 1 how the spectral samples are computed according to the method variant.

Filtering method 1 2 3
Spectral samples S1,M,N given by

Equation (3)
S2,M,N given by
Equation (4)

S3,M,N given by
Equation (5)

Table 1: How to compute the spectral samples according to the filtering method.

Algorithm 1: Standard filtering algorithm

Input : A real-valued image u of size M ×N , a filter φ : [−π, π]2 → C (continuous function)
and the number j ∈ {1, 2, 3} of the method variant.

Output: The filtered image v of size M ×N corresponding to the method j.
Compute ũ = FM,N(u) the DFT of u.1

Compute S = (Sm,n)(m,n)∈Ω̂M,N
the spectral samples corresponding to method j (see Table 1).2

Compute ṽ = (ũm,nSm,n)(m,n)∈Ω̂M,N
the element-wise multiplication of ũ and S.3

Compute v = F−1
M,N(ṽ) the inverse DFT of ṽ.4

These algorithms rely on DFT computations whose interpretations are given in Section 2. Let
M and N be two positive integers. For an image u of size M ×N the filtered image is computed in
O(MN log(MN)) operations thanks to Fast Fourier transform (FFT) algorithms [3]. Color images
can be filtered by applying the algorithms independently to each color channel. The filtering in
complex convention (method 1) corresponds to the classical DFT based computations that can be
found in the literature [2]. Note that the three methods can be naturally extended to complex-valued
images.

The three methods only differ by the computation of the spectral samples which may vary at the
boundary ΓM,N of Ω̂M,N . In particular suppose the sizes M and N are odd (i.e. ΓM,N = ∅) then the
three methods are equivalent. Similarly, suppose the continuous function φ that defines the filter is
null at the boundary of the Nyquist domain then the three methods are equivalent for any input
image of any size.

These algorithms are applicable for any image size and any filter that can be defined by a con-
tinuous function in the Nyquist domain. The current general form can be modified in particular
cases. For instance, suppose we want to apply a filter to a set of images of the same sizes. Then
the filtering only depends (with respect to the filter) on the spectral samples of φ which can be
precomputed. This discretization step entails a loss of information that may lead to the following
degenerated situation:

• Two different filters may lead to the same filtered images for a fixed size.

• It is easy to construct a filter that behaves in very different ways for different sizes.
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4 Experiments

In this experimental part we apply the three methods introduced in the previous section to several
fundamental filters. The experiments are reproducible with the source code provided in the IPOL
web part of this article6. We start by presenting the filters before comparing the results of the
different methods applied to an experimental set of four images.

4.1 Filters

We propose to consider the following fundamental filters.

4.1.1 Cardinal Sine (sinc) filter

The first filter proposed is the simplest one since it is defined by a constant function on the Nyquist
domain.

Definition 17 (Cardinal sine (sinc) filter). The cardinal sine (or sinc) filter7 is defined by the
constant function

φsinc : (ξ, ν) ∈ [−π, π]2 7→ 1.

Since φsinc is symmetric at the boundary of [−π, π]2 the spectral samples in both conventions
coincide i.e. method 1 and method 2 are equivalent. The filtered image obtained by applying method
1 (or 2) is exactly the input image. This property is in general false for method 3.

4.1.2 Shift Filter

Shifting an image is common in image processing. It can be done by using the following filter.

Definition 18 (Shift filter). Let a = (a1, a2) ∈ R2. The shift filter of parameter a is defined by the
function

φa : (ξ, ν) ∈ [−π, π]2 7→ ei(a1ξ+a2ν) ∈ C.

4.1.3 Derivative Filter

The derivative filters are used to highlight the variations along an axis.

Definition 19 (Derivative filter). The partial derivative filter with respect to the variable x is defined
by the function

ϕx : (ξ, ν) ∈ [−π, π]2 7→ iξ ∈ C.

Similarly the partial derivative filter with respect to the variable y is defined by the function

ϕy : (ξ, ν) ∈ [−π, π]2 7→ iν ∈ C.

In the following we choose to concentrate on the filter ϕx (the results for ϕy are similar). Let
M and N be the size of the image to be filtered. We notice that when M is even and N is odd
the spectral samples of method 2 are null at the boundary ΓM,N i.e. method 2 and method 3 are
equivalent. When M is odd and N is even the spectral samples of method 1 and method 2 are the
same i.e. method 1 and method 2 are equivalent. Of course, if both M and N are odd, all three
methods coincide (since this is true for any filter).

6https://doi.org/10.5201/ipol.2016.116
7The name of the filter comes from the separable cardinal sine function, which Fourier transform is the indicator

function of [−π, π]2.
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4.1.4 Laplacian Filter

The Laplacian filter is used to highlight the high frequencies of images. In particular, it is often used
for edge detection.

Definition 20 (Laplacian filter). The Laplacian filter is defined by the function

L : (ξ, ν) ∈ [−π, π]2 7→ −ξ2 − ν2 ∈ C.

Since L is a radial function the spectral samples in both conventions coincide i.e. method 1 and
method 2 are equivalent.

4.1.5 Gaussian Filter

It is common to use a Gaussian filter (e.g. to blur images).

Definition 21 (Gaussian filter). Let σ > 0. The Gaussian filter of standard deviation σ is defined
by the function

gσ : (ξ, ν) ∈ [−π, π]2 7→ e−σ
2 ξ

2+ν2

2 ∈ R.

Since gσ is a radial function the spectral samples in both conventions coincide i.e. method 1 and
method 2 are equivalent.

Let us justify the definition of the filter. Let σ > 0 and define fσ : (x, y) ∈ R2 7→ 1
2πσ2 e

−x
2+y2

2σ2 .
Then we have,

∀(ξ, ν) ∈ [−π, π]2, f̂σ(ξ, ν) = gσ(ξ, ν).

The convolution with fσ, namely Gaussian convolution [4, 11], is a common operation and build-
ing block for algorithms in image processing. Note that for all the three methods, the sequential
application of gσ and gσ′ is equivalent to the direct application of g√σ2+σ′2 (semi-group property).

4.1.6 Steerable Pyramid Filters

The steerable pyramid is a linear multiscale and multi-orientation image decomposition that has been
developed in the 90s by E. Simoncelli and his co-authors [9, 13]. It is designed after the receptive
fields found by Hubel and Wiesel [6]. Given an input image, it is obtained by first splitting the
image in a high-frequency part and a low-frequency part and then by sequentially applying bandpass
oriented filters and downsampling to the low-frequency image. This process results in a sequence of
images having different sizes, known as a pyramid. With the exception of two special images in the
pyramid, each image corresponds to a certain scale and orientation. The two remaining images are
referred to as respectively the high-frequency residual and the low-frequency residual. A fundamental
property of the steerable pyramid decomposition is that it can be inverted i.e. the input image can
be recovered from its decomposition. For instance, this property is essential in the Heeger & Bergen
texture synthesis algorithm [2, 5].

The three building block types (low-pass, high-pass and steered filters) are defined by continuous
functions on the Nyquist domain. All of them rely on the transformation between polar and cartesian
coordinates given by the following formula:

ρ−1 : (r, θ) ∈ R+×]− π, π] 7→ (r cos θ, r sin θ) ∈ R2.

Definition 22 (Low-pass filter). The low-pass filter (of the steerable pyramid) is defined by the
function φlow = l ◦ ρ : [−π, π]2 → R where

l(r, θ) = l(r) =


1 if r 6 π

4
,

cos(π
2

log2(4r
π

)) if π
4
6 r 6 π

2
,

0 if r > π
2
.
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(a) Low-pass filter (φlow) (b) High-pass filter (φhigh) (c) Horizontal filter (φ
(4,0)
steer)

(d) 1st diagonal filter (φ
(4,1)
steer) (e) Vertical filter (φ

(4,2)
steer) (f) 2nd diagonal filter (φ

(4,3)
steer)

Figure 3: Functions defining the low-pass, high-pass and steered filters of the steerable pyramid in
the Nyquist domain (with a number of orientations Q = 4). These images are actually the spectral
samples corresponding to method 1 for M = N = 512 (multiplied by a factor 255 for visualization
purposes).

Since φlow is null at the boundary of [−π, π]2 the three methods are equivalent for this filter.

Definition 23 (High-pass filter). The high-pass filter (of the steerable pyramid) is defined by the
function φhigh = h ◦ ρ : [−π, π]2 → R where

h(r, θ) = h(r) =


0 if r 6 π

4
,

cos(π
2

log2(2r
π

)) if π
4
6 r 6 π

2
,

1 if r > π
2
.

Since φhigh is symmetric at the boundary of [−π, π]2, method 1 and method 2 are equivalent for
this filter.

Definition 24 (Steered filter). Let Q be the number of orientations of the steerable pyramid and

q ∈ {0, . . . , Q − 1}. The steered filter of orientation q is defined by the function φ
(Q,q)
steer = sQ,q ◦ ρ :

[−π, π]2 → R where

sQ,q(r, θ) = sQ,q(θ) = αQ(cos(θ − πq

Q
)Q−11|θ−πq

Q
|6π

2
+ cos(θ − π(q −Q)

Q
)Q−11|θ−π(q−Q)

Q
|6π

2

),
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where αQ = 2Q−1 (Q−1)!√
Q(2(Q−1))!

is a normalization constant and p! denotes the factorial of the non-

negative integer p.

Let Q be the number of orientations of the steerable pyramid. We notice that for the horizontal
filter φ

(Q,0)
steer the spectral samples in both conventions are the same i.e. method 1 and method 2 are

equivalent.

The reconstruction process (detailed in [2]) is made possible by the relation

φ2
low + φ2

high = 1

and the normalization constant αQ which guarantees that
∑

(φ
(Q,q)
steer )2 = 1. The continuous functions

that define the low-pass, high-pass and steered filters in the Nyquist domain for Q = 4 are represented
in Figure 3.

4.2 Application of the Algorithms

We now apply the three filtering methods to an experimental set of four images and compare the
results.

4.2.1 Experimental Set of Images

In order to explain how the set of experimental images is chosen we lead a simple study on the
difference between filtered images obtained with two different methods.

Let u be a real-valued image and φ : [−π, π]2 → C be a filter. Denote by d(u, φ) the maximum
absolute difference between filtered images obtained with two different methods and define φmax =
supB |φ| where B denotes the boundary of [−π, π]2. The following definition allows us to obtain a
simple upper-bound of d(u, φ).

Definition 25 (Boundary value). Let M and N be two positive integers and u be an image of size
M ×N . The boundary value of u is denoted Bv(u) and is defined by

Bv(u) =
1

MN

∑
(m,n)∈ΓM,N

|FM,N(u)m,n| .

The relative boundary value of u is denoted Bvrel(u) and is defined by

Bvrel(u) =
MNBv(u)∑

(m,n)∈Ω̂M,N
|FM,N(u)m,n|

with the convention “0/0 = 0”. It is the ratio between the boundary value and the total value
1

MN

∑
(m,n)∈Ω̂M,N

|FM,N(u)m,n|.

A straightforward computation shows that

d(u, φ) ≤ φmaxBv(u). (6)

The difference between two filtered images obtained by different methods depends on the considered
filter and on the frequency content of the input image and more precisely, as stated in Equation (6),
on its boundary value. This is why we propose to work with images with diverse frequency contents
(from oversampled to textured). The four images used in the experiments are presented in Figure 4.
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The modulus of the DFT in logarithmic scale of an image u of size M ×N denoted M(u) is defined
by

∀(m,n) ∈ Ω̂M,N , M(u)m,n = log (1 + |FM,N(u)m,n|) .

For the visualization (in Figure 4), it is multiplied by the constant factor 15. We notice that the Dice
image is almost oversampled (it has a little high-frequency content) whereas the Garden image is
textured (it has a large amount of high-frequencies). The Garden and Dice images only have one even
size. The Square image is a binary image that has two strong orientations and an important boundary
value. The Lena image is an intermediate example of natural image whose relative boundary value
is higher than the Garden image one because it is a smaller image with two even sizes.

4.2.2 Comparison Procedure of Two Methods

Let us explain in detail how the comparison between the methods is made.
Let φ be a filter and u be an image of size M × N . Let (j, j′) ∈ {1, 2, 3}2 and denote by vj the

filtered image obtained by method j. Let R be the range (maximum value minus minimum value) of
R(v1)8. Then a comparison of vj and vj′ is done by considering the difference image ∆j,j′ = |vj−vj′ |
and the relative difference image9 ∆j,j′

rel = ∆j,j′/R. Before visualization the relative difference image

8It’s an arbitrary choice.
9We use the convention “0/0 = 0”.

(a) Lena image (512× 512): Bv = 5.5 (0.10%) (b) Square image (256× 256): Bv = 7.4 (0.21%)

(c) Dice image (704× 469): Bv = 0.68 (0.028%) (d) Garden image (704× 469): Bv = 10 (0.068%)

Figure 4: Set of four images used in the experiments. For each image we plot the image (left) and the
modulus of its DFT (right) in logarithmic scale (multiplied by a factor 15). The boundary value is
noted Bv and the relative boundary value is written in percentage. We notice that the Dice image is
almost oversampled (it has a few high frequencies amount) whereas the Garden image is textured (it
has a large amount of high frequencies). Note that the Garden and Dice images only have one even
size. The Square image is a binary image that has two strong orientations and an important boundary
value. The Lena image is an intermediate example of natural image whose relative boundary value
is higher than the Garden image one because it is a smaller image with two even sizes.
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is multiplied by the constant factor 105 (which is the same whatever are the filter and the input
image). We also compute the following values:

1. the maximum difference (maximum value of ∆j,j′ over ΩM,N) noted d = dj,j
′
(u, φ) and the

relative maximum difference (maximum value of ∆j,j′

rel over ΩM,N) expressed in percentage,

2. the mean difference (mean value of ∆j,j′ over ΩM,N) noted md = mj,j′

d (u, φ) and the relative

mean difference (mean value of ∆j,j′

rel over ΩM,N) expressed in percentage.

Note that the differences highly depend on the range of the filtered images, thus the relative values
provide more significant information while comparing differences (over the experimental set of images
for a given filter or over the filters for a given image).

4.2.3 Results

We apply the comparison procedure to our experimental set of four images and the nine following
filters:

• the sinc filter (Figure 5),

• the shift filter of parameter (1/4, 1/4) (Figure 6 and Table 2),

• the derivative filter ϕx (Figure 7 and Table 3),

• the Laplacian filter L (Figure 8),

• the Gaussian filter of parameter σ0 =

√
log(2)

π
(Figure 9)10,

• the low-pass filter (Figure 10),

• the high-pass filter (Figure 11),

• the horizontal filter φ
(4,0)
steer with Q = 4 orientations11 (Figure 12),

• the first diagonal filter φ
(4,1)
steer with Q = 4 orientations (Figure 13 and Table 4).

When the three methods provide different filtered images we decompose the presentation of the
results into a figure containing filtered images and relative difference images and a table with the
maximum difference and mean difference values (and the corresponding relative values).

To display images we use the most common method. The brightness of a pixel is represented by
its pixel value which is an integer from 0 to 255 (8-bits images). Let u be a real-valued image. The
8-bit image corresponding to u is the integral part of max(0,min(255, u)). An affine transformation
may have to be applied to filtered images (or their real parts) before obtaining 8-bit images in
order to avoid saturation12 and badly constrasted images. The affine transformation choice (which
is arbitrary) depends on the filter and is detailed in the corresponding figure.

The difference is more important when the input image has a strong high-frequency content
(Garden and Square images). For 8-bit images the typical range value is R = 255, therefore a
maximum difference of one grey level corresponds approximately to a relative difference of 1/255 '
0.39%. For the proposed set of nine filters and four images, the relative maximum difference values

10The value σ0 is chosen so that gσ0
(π, π) = 1/2.

11It is the default value used in the Heeger & Bergen texture synthesis algorithm.
12For instance saturation occurs for zero-mean images.
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are lower than 5/255 ' 1.9% and the relative mean difference values are lower than 3/255 ' 1.2%. It
is hardly possible to distinguish with the naked eye a difference between the results of two methods.
That is why we only display the real part of the filtered image in the complex convention (method
1). The higher difference values are obtained for the derivative filter and the Laplacian filter. Indeed,
it comes from the fact that |Dx| and |L| reach their maxima on the boundary of [−π, π]2.

4.3 Which Method should I use?

The three methods are equally licit and in general none should be preferred to the others. The
results are numerically different but indistinguishable in practice. The maximum difference between
the methods of at most 5 grey levels13 (in a scale from 0 to 255) leads to no visible distinction but
determining if it represents a meaningful difference depends on the application. For instance if the
goal is to blur an image the user may attach less importance to the differences than when trying to
denoise it.

It is left to the user to choose the method. The following remarks may be helpful for making the
decision:

• Method 1 is the easiest one to implement. For simple applications it can be used in first place.

• Suppose the filter φ has Hermitian symmetry. Then the filtered images obtained by methods
2 and 3 are real-valued.

• Method 3 destroys high-frequency information but there is no ambiguity in the interpolation.
It should not be used in analysis/synthesis scheme based on a reconstruction property.

We recall that when the sizes of the image are odd the three methods are equivalent. If the user
has the possibility to modify the size of its input images odd sizes should be considered. However
generally the images sizes cannot be changed and sometimes are powers of two (e.g. in a pyramidal
decomposition).

Lena Square Dice Garden
1 vs 2 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.052%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)
1 vs 3 d 1.1 (0.48%) 2.2 (0.58%) 0.18 (0.093%) 2.0 (0.61%)

md 0.17 (0.075%) 0.77 (0.20%) 0.029 (0.015%) 0.42 (0.13%)
2 vs 3 d 0.77 (0.34%) 1.6 (0.41%) 0.13 (0.067%) 1.4 (0.43%)

md 0.12 (0.053%) 0.55 (0.14%) 0.020 (0.010%) 0.30 (0.094%)

Table 2: Maximum difference d and mean difference md for the shift filter of parameter (1/4, 1/4).
Relative values are in brackets.

13Actually for most of the examples it is less than 1 grey level.
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(a) Lena: 1.0 (0.46%) and 0.17 (0.078%) (b) Square: 2.0 (0.78%) and 0.75 (0.30%)

(c) Dice: 0.17 (0.092%) and 0.029 (0.016%) (d) Garden: 2.3 (0.92%) and 0.43 (0.17%)

Figure 5: Comparison of the filtering methods for the sinc filter. The filtered image v1 is the input.
For each image we display v3 and the relative difference image ∆1,3

rel (right). The numbers below the
images refer respectively to the maximum difference d and the mean difference md (with the relative
values in brackets).

Lena Square Dice Garden
1 vs 2 d 1.6 (0.67%) 3.1 (0.84%) 0.53 (0.32%) 7.2 (1.4%)

md 0.44 (0.19%) 1.6 (0.42%) 0.091 (0.055%) 1.3 (0.26%)
1 vs 3 d 1.8 (0.75%) 3.2 (0.86%) 0.53 (0.32%) 7.2 (1.4%)

md 0.50 (0.21%) 1.7 (0.45%) 0.091 (0.055%) 1.3 (0.26%)
2 vs 3 d 0.80 (0.33%) 0.72 (0.19%) 0 0

md 0.16 (0.067%) 0.20 (0.053%) 0 0

Table 3: Maximum difference d and mean difference md for the derivative filter ϕx. Relative values
are in brackets.

Lena Square Dice Garden
1 vs 2 d 0.29 (0.14%) 0.36 (0.10%) 0.058 (0.054%) 0.64 (0.19%)

md 0.046 (0.022%) 0.056 (0.016%) 0.0080 (0.0074%) 0.12 (0.036%)
1 vs 3 d 0.38 (0.18%) 0.79 (0.23%) 0.076 (0.071%) 0.83 (0.25%)

md 0.086 (0.040%) 0.27 (0.077%) 0.015 (0.014%) 0.22 (0.064%)
2 vs 3 d 0.37 (0.17%) 0.70 (0.20%) 0.060 (0.056%) 0.81 (0.24%)

md 0.062 (0.029%) 0.24 (0.070%) 0.011 (0.0097%) 0.16 (0.047%)

Table 4: Maximum difference d and mean difference md for the first diagonal filter L
(4,1)
steer with Q = 4

orientations. Relative values are in brackets.
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(a) Lena

(b) Square

(c) Dice

(d) Garden

Figure 6: Comparison of the filtering methods for the shift filter of parameter (1/4, 1/4). From left
to right we display for each input image: the real part of v1 and the relative difference images ∆1,2

rel ,
∆1,3

rel and ∆2,3
rel .
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(a) Lena

(b) Square

(c) Dice

(d) Garden

Figure 7: Comparison of the filtering methods for the derivative filter ϕx. From left to right we
display for the Lena and Square images: the real part of v1 and the relative difference images ∆1,2

rel ,
∆1,3

rel and ∆2,3
rel . As method 2 and 3 are equivalent for images of the size of the Dice and Garden image,

we only display the real part of v1 and ∆1,2
rel for these images. For visualization purposes we change

the mean of v1 to 127 (instead of 0). The derivative filter highlights the strong horizontal variations
of the input image. We notice a lot of ringing effect (particularly for the Square image).
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(a) Lena: 12 (1.6%) and 2.0 (0.29%) (b) Square: 23 (1.4%) and 7.7 (0.46%)

(c) Dice: 2.1 (0.38%) and 0.35 (0.064%) (d) Garden: 26 (1.6%) and 5.2 (0.32%)

Figure 8: Comparison of the filtering methods for the Laplacian filter. For each image we display the
real part of v1 and the relative difference image ∆1,3

rel (right). The numbers below the images refer
respectively to the maximum difference d and the mean difference md (with the relative values in
brackets). For visualization purposes we change the mean of v1 to 127 (instead of 0). The Laplacian
filter highlights the high-frequencies of the input image. We notice a lot of ringing effect (particularly
for the Square image).
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(a) Lena: 0.68 (0.31%) and 0.11 (0.052%) (b) Square: 1.4 (0.54%) and 0.53 (0.20%)

(c) Dice: 0.11 (0.063%) and 0.019 (0.011%) (d) Garden: 1.6 (0.61%) and 0.28 (0.11%)

Figure 9: Comparison of the filtering methods for the Gaussian filter of standard deviation σ0 =√
log(2)

π
. For each image we display the real part of v1 and the relative difference image ∆1,3

rel (right).
The numbers below the images refer respectively to the maximum difference d and the mean difference
md (with the relative values in brackets). With a higher value of standard deviation the filtered images
are more blurry and the differences between the methods decrease.
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(a) Lena (b) Square

(c) Dice (d) Garden

Figure 10: Filtering of the images by the low-pass filter. The three methods are equivalent. We
notice that as expected the filtered images are blurred versions of the input.
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(a) Lena: 1.0 (0.61%) and 0.17 (0.10%) (b) Square: 2.0 (0.69%) and 0.75 (0.26%)

(c) Dice: 0.17 (0.16%) and 0.030 (0.027%) (d) Garden: 2.3 (0.84%) and 0.43 (0.16%)

Figure 11: Comparison of the filtering methods for the high-pass filter. For each image we display
the real part of v1 and the relative difference image ∆1,3

rel (right). The numbers below the images refer
respectively to the maximum difference d and the mean difference md (with the relative values in
brackets). For visualization purposes we multiply by a factor 5 the image v1 and then set the mean
to 127 (instead of 0). The high-pass filter highlights the strong variations of the input image.
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(a) Lena: 0.37 (0.22%) and 0.071 (0.042%) (b) Square: 0.95 (0.35%) and 0.45 (0.16%)

(c) Dice: 0.022 (0.016%) and 0.0031 (0.0023%) (d) Garden: 0.22 (0.070%) and 0.047 (0.015%)

Figure 12: Comparison of the filtering methods for the horizontal filter φ
(4,0)
steer with Q = 4 orientations.

For each image we display the real part of v1 and the relative difference image ∆1,3
rel (right). The

numbers below the images refer respectively to the maximum d and the mean difference md (with
the relative values in brackets). The horizontal filter highlights the strong horizontal variations of
the input image.
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(a) Lena

(b) Square

(c) Dice

(d) Garden

Figure 13: Comparison of the filtering methods for the first diagonal filter φ
(4,1)
steer with Q = 4 orienta-

tions. From left to right we display for each input image: the real part of v1 and the relative difference
images ∆1,2

rel , ∆1,3
rel and ∆2,3

rel . As expected the first diagonal filter highlights the strong variations in
the first diagonal orientation.
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5 Conclusion

In this paper we give a clear interpretation, as a continuous convolution, of the filtering of a discrete
real-valued image by a filter specified by a continuous function in the Nyquist domain [−π, π]2. The
filtering is interpreted as the convolution of a distribution, standing for the filter, with a trigonometric
polynomial interpolator of the image. Two plausible interpolations and two choices of distribution are
considered. They lead to three equally licit algorithms. All of them can be seen as method variants of
the same standard filtering algorithm in the DFT domain. By an application to several fundamental
filters we show that the method differences, which come from the boundary DFT coefficients, are
not visible to the naked eye in practice. For 8-bit images, the difference order of magnitude is in
general of one grey level but may be higher for filters with large values on the boundary of the
Nyquist domain. In general none method should be preferred to the others and the choice depends
on the desired properties of the filtering. For instance, in our implementation of the Heeger-Bergen
pyramid-based texture synthesis algorithm provided in [2], we use method 1 in order to guarantee
the exact reconstruction property.
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Errata

In the original paper published on 7 November 2016, Proposition 2 was wrong for M and N even. A
correct formulation was actually proven in [1] (Equation (23)). The authors would like to thank Rémy
Abergel and Lionel Moisan for reporting the error. The trigonometric polynomial corresponding to
the coefficients written in the proposition is still a real-valued trigonometric polynomial interpolator
of u and it should be preferred to R(P

(c)
u ). Thus the changes consist essentially in modifying the

definition of P
(r)
u in Section 2.2. The three methods can be naturally extended to complex-valued

images.
In the new version, compared to the version published on 7 November 2016, the exact changes

are the following:

• Page 187 paragraph 1. The sentence ”By taking its real part, we build another interpolator.”
is replaced by ”Thus, we build another interpolator that is real-valued.”

• Page 187 Definition 8. The definition of P
(r)
u is modified so that its coefficients are the ones of

the previous version of Proposition 2.

• Page 187 paragraph 2. Removed.

• Page 187 Proposition 2. Proposition 2 is modified.

• Page 187 Proof of Proposition 2. We add the sentence ”If M and N are even, we have
FM,N(u)−M

2
,−N

2
∈ R and we conclude using the relation R(e−iπ(x+y)) + sin(πx) sin(πy) =

1
4

(
eiπ(x+y) + e−iπ(x+y) + eiπ(x−y) + eiπ(−x+y)

)
.”

• Page 187 paragraph 3. The sentence ”Taking the real part of P
(c)
u boils down to correcting the

eventual asymmetry of the DFT coefficients.” is moved to the end of the paragraph and is now
followed by the sentences ”When M and N are even P

(r)
u is preferred to R(P

(c)
u ) because it has

the same coefficients at the four corners of Ω̂s
M,N . Proposition 2 is a reformulation of Equation

(23) in [1].”

• Page 192 Proof of Proposition 4. In the first sentence of the real convention case, ”Proposition
2” is replaced by ”Definition 8”.

• Page 193 paragraph 2. The sentence ”Note that only methods 1 and 3 can be naturally extended
for complex-valued images while on the contrary the trigonometric polynomial used in method
2 is not interpolating when dealing with non-real images.” is replaced by ”Note that the three
methods can be naturally extended to complex-valued images.”.

• Page 200 Section 4.3. We removed the third item ”Methods 1 and 3 are applicable to complex-
valued images while method 2 is not.”.

• Page 210 Bibliography. The reference to [1] is added.
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