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Frédéric Chavane CNRS, INT, Aix-Marseille Université Examinateur
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Gabriel Peyré CNRS, DMA, École Normale Supérieure Directeur
Bertrand Thirion INRIA Rapporteur





R�esum�e

Le but de cette thèse est de proposer une modélisation mathématique des
stimulations visuelles afin d’analyser finement des données expérimentales en
psychophysique et en electrophysiologie. Plus précisément, afin de pouvoir ex-
ploiter des techniques d’analyse de données issues des statistiques Bayésiennes
et de l’apprentissage automatique, il est nécessaire de développer un ensemble
de stimulations qui doivent être dynamiques, stochastiques et d’une complexité
paramétrée. Il s’agit d’un problème important afin de comprendre la capacité
du système visuel à intégrer et discriminer differents stimuli. En particulier, les
mesures effectuées à de multiples échelles (neurone, population de neurones,
cognition) nous permette d’étudier les sensibilités particulières des neurones,
leur organisation fonctionnelle et leur impact sur la prise de décision. Dans ce
but, nous proposons un ensemble de contributions théoriques, numériques et
expérimentales, organisées autour de trois axes principaux : (1) un modèle de
synthése de textures dynamiques Gaussiennes spécialement paramètrée pour
l’étude de la vision; (2) un modèle d’observateur Bayésien rendant compte
du biais positif induit par fréquence spatiale sur la perception de la vitesse;
(3) l’utilisation de méthodes d’apprentissage automatique pour l’analyse de
données obtenues en imagerie optique par colorant potentiométrique et au
cours d’enregistrements extra-cellulaires. Ce travail, au carrefour des neuro-
sciences, de la psychophysique et des mathématiques, est le fruit de plusieurs
collaborations interdisciplinaires.
Mots-clés: stimulation visuelle, synthèse de textures, inférence Bayésienne in-
verse, discrimination de vitesse, apprentissage supervisé, imagerie optique par
colorant potentiométrique, enregistrement extra-cellulaire, cartes d’orientations,
selectivité à l’orientation, neurones.

Abstract

The goal of this thesis is to propose a mathematical model of visual stim-
ulations in order to finely analyze experimental data in psychophysics and
electrophysiology. More precisely, it is necessary to develop a set of dynamic,
stochastic and parametric stimulations in order to exploit data analysis tech-
niques from Bayesian statistics and machine learning. This problem is impor-
tant to understand the visual system capacity to integrate and discriminate
between stimuli. In particular, the measures performed at different scales (neu-
rons, neural population, cognition) allow to study the particular sensitivities
of neurons, their functional organization and their impact on decision making.
To this purpose, we propose a set of theoretical, numerical and experimental
contributions organized around three principal axes: (1) a Gaussian dynamic
texture synthesis model specially crafted to probe vision; (2) a Bayesian ob-
server model that accounts for the positive effect of spatial frequency over
speed perception; (3) the use of machine learning techniques to analyze volt-
age sensitive dye optical imaging and extracellular data. This work, at the
crossroads of neurosciences, psychophysics and mathematics is the fruit of
several interdisciplinary collaborations.
Keywords: visual stimulation, texture synthesis, inverse Bayesian inference,
speed discrimination, supervised learning, voltage sensitive dye optical imag-
ing, extracellular recordings, orientation maps, orientation selectivity, neurons.
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proposé ce sujet entre mathématiques et neurosciences correspondant parfaite-
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siaste et disponible, il a parfaitement su me transmettre le bagage nécessaire
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pour nos discussions toujours fructueuses. Merci à tous les autres: Valérie,
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Introduction

1 Outline
Overview. The goal of this PhD is to develop a mathematically sound frame-
work to perform both stochastic visual stimulation and statistic data analysis,
for psychophysics and electrophysiology of the visual brain.

Scientific Context. This work is a collaboration between the team of Gabriel
Peyré initially at the research center CEREMADE (Université Paris-Dauphine,
France) and now at DMA (École Normale Supérieure de Paris), and the visual
neuroscience team of Yves Frégnac at the UNIC lab (Gif-sur-Yvette, France).
As a strong interdisciplinary project, my work was supervised by Gabriel Peyré
in mathematics and Cyril Monier in neurosciences. I have also developed a
strong collaboration in psychophysics of vision with Laurent Perrinet from INT
(Marseille, France) and Andrew Meso initially at INT and now at the CCNRC
(Bournemouth University, Bournemouth, UK) .

This collaboration led me to work in various fields in addition to my initial
mathematical background. The target readers of this manuscript are mathe-
maticians, neuroscientists and psychophysicists. In addition to promote such
interactions, I intend to show how they benefit to experimental neurosciences
and psychophysics. In particular, when studying vision, it is important to
go trough more complex, mathematically grounded visual stimulation mod-
els. Increasing the complexity of these models allows us to build innovative
experimental protocols and the mathematical description provides a clear un-
derstanding of the stimuli. Such an understanding is necessary in order to be
able to make sense of the collected data. Moreover, the increasing amount
of available data stimulates the development of machine learning based tech-
niques that experimental neurosciences should benefit from.

Manuscript Organization. This manuscript is organized into six chapters
among which three principal parts can be distinguished:

• Chapter I: description of the Motion Cloud (MC) visual stimulation
model. In Chapter I, we detail the mathematical description of a dy-
namic texture model specially crafted to probe vision. This work was
done in collaboration with Laurent Perrinet and Andrew Meso at INT.
Gérard Sadoc (UNIC) implemented our algorithm into the Elphy soft-
ware used at UNIC for stimulation and recording. This constitutes our
first contribution. Initially developed by Leon [169] as a spatio-temporal
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Gaussian field, we embed this model in a general framework which en-
ables us to give three equivalent formulations. On the one hand, these
three formulations provide a biologically plausible justification of the
model; on the other hand, they provide a real-time synthesis algorithm.

• Chapters II and III: a Bayesian approach to discrimination tasks in psy-
chophysics and an application to the study of motion perception. In
Chapter II, we describe a mathematical formulation of an ideal Bayesian
observer model and we show how to use it to analyze data in psy-
chophysics. We tackle the question of inverse Bayesian inference ie
knowing decisions made using a Bayesian model, we intend to infer the
likelihood and prior. In Chapter III, we use this approach to explain
the results obtained in a two-alternate forced choice (2AFC) speed dis-
crimination experiment using MC stimulations. This work was done in
collaboration with Laurent Perrinet and Andrew Meso at INT and con-
stitutes our second sets of contributions. We confront our model to real
data and successfully describe the positive effect of spatial frequency over
speed perception using a bi-variate prior.

• Chapters IV, V and VI: the use of machine learning techniques to an-
alyze electrophysiological data. In Chapter IV, we recall the basics of
supervised learning and define a new classification error measure. Then,
in Chapters V and VI, we make use of supervised learning to analyze
Voltage Sensitive Dye optical Imaging (VSDi) data and Extracellular
Recordings (ER). This work was done in collaboration with Cyril Monier,
Luc Foubert, Yannick Passarelli and Margot Larroche from the vision
team at UNIC. Unfortunately, experiments using MCs and VSDi were
not fruitful, however we obtained some interesting results using stan-
dard grating stimuli. In contrast, the results obtained by using MCs
and ER are promising. Supervised learning appears relevant to analyze
the spatio-temporal dynamic of the VSDi signal, and this allows us to
provide a methodology to analyze different types of protocols and to con-
clude on a simple model of VSDi signal. We conduct similar analysis on
ER, and we show that neural populations contain enough information
to discriminate between stimuli that differ with regards to parameters of
the MC stimulations (orientation and spatial frequency bandwidth). We
conclude by showing that these findings are compatible with a simple
neural computational model.
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2 Problem under Study and Previous Works

2.1 Probing the Visual System: from Stimulation to
Data Analysis

The visual system can be viewed as a machine that receives external inputs
(the photons that reach the eyes) and produces internal outputs (electrical sig-
nal in the brain). In order to understand how this machine transforms inputs
into outputs we need to have a clear understanding of both inputs and out-
puts. The inputs are physically well understood and we have been able to
build some optical instruments to capture visible light from our environment.
However, we still have a poor understanding of natural images as we have no
low dimensional mathematical model to account for the complexity of natural
images. Indeed, the vast majority of the litterature focuses on establishing
statistical properties or on identifying key features of natural images [86, 163,
195, 206]. Furthermore, the problem of dynamical modeling is much less stud-
ied, see for instance the previous work of Dong [44]. Even if the design of
generic natural model is out of reach, the statistical modeling of texture was
succesfully applied to the problem of texture synthesis (see Section 1.1). We
mention here the work of Portilla et al. [149] who design an algorithm based
on physiology and psychophysics. We also highlight the work of Galerne et
al. [63] who settle the theoretical basis of our dynamic Motion Cloud model.
Concerning the outputs, the biophysical mechanisms at stake in neurons and
synapses are now well understood. While experimental instruments and tech-
niques have progressed a lot, recording very large assemblies of single neurons
is impossible. Therefore, we only have partial samples of brain outputs, and
experimental techniques open small windows at different scales on these out-
puts. Probing the visual system thus corresponds to understanding the relation
between inputs that have an enormous complexity and outputs that are not
fully understood and are only partially accessible [53, 176].

The question of the class of stimulation that should be used to probe the
visual system is a long standing debate. This debate opposes artificial stimu-
lation [164] to natural stimulation [68]. For the last 60 years, artificial stimuli
have been most commonly used. Generally, they consist of moving bars, dots,
sine waves or noise. These artificial stimuli are well controlled and allow to test
particular features present in natural images such as oriented edges, spatial and
temporal frequencies, and movement directions. They play an essential role in
the concept of tuning curve which represents the firing activity of a neuron as
a function of some stimulus parameter. Noise as a stochastic stimulus appears
fundamental to the estimation of receptive fields using Spike Triggered Average
(STA) and Spike Triggered Covariance (STC) methods [177]. Natural stimuli
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are less used but the improvement of optical instruments and the spreading of
images in the numerical environment make them more and more attractive to
be used as stimuli. Natural stimulation is mainly motivated by the idea that
our brain has adapted to its environment through long term evolution mech-
anisms [175]. Therefore, by using natural stimulation we prevent unnatural
bias that can emerge from artificial stimulation [140]. However, choosing nat-
uralness raises the issue of the high statistical complexity of natural images.
Handling this complexity requires to make simple hypotheses about the spe-
cific features of natural images that elicit neural responses. Therefore, there is
a risk to miss some multifactorial features that explain the responses. Finally,
the fundamental question lies in the gap that separates artificial and natural
stimulation. There are ways to fill the gap on whether it consists in building
more complex parametric model [149, 58] or deteriorating natural images [160,
115]. Our work is rooted in these attempts by trying to increase the complex-
ity of artificial and stochastic stimulations, yet keeping a reasonable number
of parameters.

In experimental neurosciences the recording techniques are multiple: intra-
cellular and extracellular recordings (ER), electroencephalography, functional
magnetic resonance imaging (fMRI), two-photons imaging, voltage sensitive
dye optical imaging (VSDi), etc. These measuring instruments have specific
advantages and drawbacks and are generally associated to different spatio-
temporal scales. For example, fMRI records signal at the scale of the entire
brain with a low temporal resolution while intracellular recording measures the
electric activity of a single neurons at a high temporal resolution. Under such
constraints it becomes difficult to embed datasets from different techniques in
a common framework. In fact, for each scale there exist an adapted math-
ematical framework. For instance, Hodgkin-Huxley modeled the signal of a
single neuron; when moving to a neural population it becomes more adapted
to use mean-fields combined with dynamical systems theory [50, 31] or build
a neural network. In psychophysics, data collection is restricted; it consists in
asking an observer if she detects or discriminates different stimuli. In such a
way, we are able to measure detection or discrimination thresholds and bias at
cognition scale. Along this work, we try to make sense of data collected with
different techniques at different scales under similar stimulation.

2.2 Bayesian Modeling Visual Motion Perception

A normative explanation for the function of perception is to infer relevant
unknown real world parameters Q from the sensory input, with respect to a
generative model [74]. Equipped with a prior about the distribution of the
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parameter (typically learned and which reflects some knowledge about the
surrounding world) the modeling representation that emerges corresponds to
the Bayesian brain hypothesis [103, 46, 34, 102]. This assumes that when given
some sensory information S, the brain takes a decision using the posterior
distribution of the parameter given the sensory information, which, by Bayes
theorem, can be obtained as :

PQ|S(q|s) =
PS|Q(s|q)PQ(q)

PS(s)
. (2.1)

where PS|Q is the likelihood and PQ represents prior knowledge. This hypoth-
esis is well illustrated with the case of motion perception [211]. This work uses
a Gaussian parameterization of the generative model and a unimodal (Gaus-
sian) prior in order to estimate perceived speed v when observing a visual
input I. However, such a Bayesian hypothesis – based on the formalization
of unimodal Gaussian prior and likelihood functions for instance – does not
always fit psychophysical results [209, 79]. As such, a major challenge is to
refine the definition of generative models so that they are consistent with a
larger set of experimental results.

The estimation problem inherent to perception can be somehow be alevi-
ated by defining an adequate generative model. The simplest generative model
to describe visual motion is probably the luminance conservation equation [3].
It states that luminance I(x, t) for (x, t) ∈ R2 ×R is approximately conserved
along trajectories defined as integral lines of a vector field v(x, t) ∈ R2 × R.
The corresponding generative model defines random fields as solutions to the
stochastic partial differential equation (sPDE),

〈v, ∇I〉+
∂I

∂t
= W, (2.2)

where 〈·, ·〉 denotes the Euclidean scalar product in R2, ∇I is the spatial
gradient of I. To match the spatial scale or frequency statistics of natural
scenes (ie 1/f amplitude fall-off) or of some alternative category of textures,
the driving term W is usually defined as a stationary colored Gaussian noise
corresponding to the average localized spatio-temporal correlation (which we
refer to as spatio-temporal coupling), and is parameterized by a covariance
matrix Σ, while the field is usually a constant vector v(x, t) = v0 accounting
for a full-field translation with constant speed.

Ultimately, the application of this generative model is essential for probing
the visual system, for instance for one seeking to understand how observers
might detect motion in a scene. Indeed, as shown by [135, 211], the negative
log-likelihood of the probability distribution of the solutions I to the luminance
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conservation equation (2.2), on some space-time observation domain Ω× [0, T ],
for some hypothesized constant speed v(x, t) = v0, is proportional to the value
of the motion-energy model [3]

∫

Ω

∫ T

0

|〈v0, ∇(K ? I)(x, t)〉+
∂(K ? I)

∂t
(x, t)|2dt dx (2.3)

where K is the whitening filter corresponding to the inverse square root of Σ,
and ? is the convolution operator. Using a prior knowledge about the expected
distribution of motions (preference for slow speeds, for instance), a Bayesian
formalization can be applied to this inference problem [210, 211]. One of
the purposes of this dissertation is to refine this class of dynamic stochastic
models to perform motion estimation using energy models associated to the
stimulation.

2.3 Data Analysis in Electrophysiology

Voltage Sensitive Dye Optical Imaging The VSDi technique is a promis-
ing recording modality for the cortical activity at meso-scale. It consists in
staining the cortical surface with some voltage sensitive dye and filming this
surface [75]. In presence of electrical activity and light, the dye re-emits light.
It is therefore possible to identify some areas of activity under different stim-
ulations. However, the signal is known to be corrupted by many artifacts,
which leads many people to tackle this question [159, 216, 156]. These draw-
backs have not prevented experimentalists to reproduce results obtained in
intrinsic optical imaging. They use oriented drifting gratings as stimuli that
elicit responses in different areas of the primary visual cortex (see eg [174]).
This reveals the existence of orientation maps in the primary cortex of many
mammals: the surface of the primary visual cortex is clustered in different
domains where neurons share the same orientation tuning. The main interest
of VSDi is its high temporal resolution. The paper by Sharon [174] highlights
the increasing-decreasing dynamic of the difference between preferred and or-
thogonal orientation responses. Among other data set, we analyze data that
is particularly related to the work of Chavane et al. [32] where VSDi is used
to understand the lateral spread of orientation selectivity by comparing re-
sponses evoked by local/full-field and center/surround stimuli. We also tackle
the problem of the transient dynamic due to changes in motion direction as
in the paper of Wu et al. [212] where it is shown that cortical dynamic com-
bined with population coding is well suited to encode these changes. Let us
remark that only a few previous works make use of supervised machine learn-
ing techniques to analyze VSDi signals [7, 8, 24]. One of the purposes of this
dissertation is to design some machine learning based analyses of VSDi data.
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Extracellular Recordings The ER technique is one of the oldest recording
modalities. It consists in recording the electrical activity of cells in the small
area surrounding an electrode. Today, it is possible to record multiple neu-
rons at the same time over large and deep volumes of cortex [36, 47]. In ER
the signal is twofold: the high-frequency component (400Hz to few thousands)
which corresponds to spikes of single neurons and is known as multiunit activ-
ity (MUA), and the low-frequency component (cut off at about 300Hz) which
represents an average activity of multiple neurons and is known as local field
potential (LFP). In this dissertation, we focus on the high-frequency compo-
nent corresponding to the neurons’ spiking activity. The spiking activity of
one neuron allows to compute their tuning curve and receptive field [87]. A
tuning curve is the simple representation of the spiking activity as a function
of one stimulation parameter. It should be understood as a sensitivity curve.
A receptive field is the region of the visual field in which a stimulus modi-
fies its firing rate. Different reverse correlation techniques exist to estimate
receptive fields [98, 40]. Also known as Spike-Triggered Analysis (STA) and
Spike-Triggered Covariance (STC), they constitute the standard methods. Let
us also single out the paper of Park et al. [145] who perform a Bayesian estima-
tion of receptive fields and provide impressive results. Based on these concepts,
different neural network models are built. They generally consist in a first lin-
ear step followed by a non-linear thresholding step that is then converted to
spiking activity by using a Poisson distribution [172]. Such models are also
known as Linear/Non-linear Poisson spiking models (LNP). Few papers make
use of standard supervised learning techniques. In particular, Hung et al. [90]
use a kernel linear regression to classify the responses of IT neurons to dif-
ferent stimuli and make stimulus predictions knowing the neurons’ response.
More recently Yamins et al. [215] use a classifier to classify the responses of
neurons and make predictions about the stimulus. Finally, to our knowledge,
the paper of Goris et al.[71] is the only one to use MC-like stimulations in ER
to study the origin of tuning diversity in the visual cortex. One of our goals is
to perform some machine learning based analyses of ER data obtained under
MC stimulations that we subsequently compare to analysis of synthetic data
using a LNP model.

3 Contributions

3.1 Chapter I: A Model of Visual Stimulation

In Chapter I, we seek to reach a better understanding of human percep-
tion by improving generative models for dynamic texture synthesis. From that
perspective, we motivate the generation of visual stimulation within a station-



16 Introduction

ary Gaussian dynamic texture model I.2.1. We develop the proposed model
by extending, mathematically detailing and robustly testing previously intro-
duced dynamic noise textures [169, 178, 194] coined “Motion Clouds” (MC or
MCs). Our main contribution is a complete axiomatic derivation of the model
(see Section I.2). We detail three equivalent formulations of the Gaussian dy-
namic texture model. First, the composite dynamic textures are constructed
by the random aggregation of warped patterns (“textons”), which can then
be viewed as 3D Gaussian fields. Third, these textures are cast as solutions
to a stochastic partial differential equation (sPDE). A second contribution is
the mathematical proof of the equivalence between the two first formulations
and a class of linear sPDEs (see Section I.3). This shows that our model is a
generalization of the well-known luminance conservation Equation (2.2). This
sPDE formulation has two chief advantages: it allows for a real-time synthesis
using an AR recurrence and allows one to recast the log-likelihood of the model
as a generalization of the classical motion energy model, which in turn is cru-
cial to allow for Bayesian modeling of perceptual biases. Finally, we provide
the source code1 of this model of dynamic textures as an open source software
development and reproducible research, which is crucial to advance the state
of the art of real time stimulation for neurosciences. Some additional examples
of MCs and texture synthesis from examples are available online2.

3.2 Chapter II: Probabilistic and Bayesian Approach in
Psychophysics

In Chapter II, first, we briefly review the Bayesian approaches in neu-
rosciences and psychophysics. Then, we introduce the problem of “inverse
Bayesian inverse”. We formalize the concept of observer’s internal represen-
tations in a probabilistic model. In this model, we are able to formulate the
“Bayesian brain” hypothesis: our brain estimates external parameters as if
they have generated their sensory representations. Then, we are able to de-
fine in mathematical terms the notion of psychometric curve obtained in a
two-alternate forced choice (2AFC) experiment. This general definition, com-
bined with our ideal Bayesian observer model appears intractable in absence
of specific assumptions. We thus exemplify the psychometric curve by making
simplifying assumptions on the likelihood and prior and we give numerical ex-

1http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

motion_clouds
2https://jonathanvacher.github.io/mc_examples.html

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds/
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http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
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https://jonathanvacher.github.io/mc_examples.html
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amples (see online3). Finally, we provide an algorithm which allows to solve
the inverse Bayesian inference problem. The algorithm is illustrated in the
following chapter.

3.3 Chapter III: Effect of Spatial Frequency over Speed
Perception

In Chapter III, we present and analyze the result of psychophysical experi-
ments that we performed to probe speed perception in humans using zoom-like
changes in MCs spatial frequency content. We simplify the general Bayesian
model developed in Chapter II by assuming a Gaussian likelihood and a Lapla-
cian prior (see Section III.2.2). As the MC model allows for the derivation of
a local motion-energy model, we use it to estimate speed in the experimental
stimuli. We then validate the fitting process of the model using synthesized
data in Section III.4.2. The human data replicates previous findings that rel-
ative perceived speed is positively biased by spatial frequency increments. By
comparing the estimated variances of likelihoods to the distribution of the
motion-energy model estimates of speed, we show that they are not compat-
ible (see Section III.3). The effect cannot be fully accounted for by previous
models, but the current prior acting on the spatio-temporal likelihoods has
proved necessary in accounting for the perceptual bias (see Section III.5). We
provide an online4 example of data synthesis and analysis.

3.4 Chapter IV: Supervised Classification

Chapter IV is addressed to readers that are not familiar with supervised
classification. From a mathematical point of view this Chapter provides very
few contributions. We review in Section III.2 the different approaches to su-
pervised classification. We give some useful and sometimes original examples
to the different supervised classification approaches. In Section III.5, we give
precise definitions of the different tools we use in the following chapters. In
summary, this Chapter is closer to a graduate course in machine learning than
to a contribution to research. However, within an interdisciplinary study, we
feel it is necessary to set up the general problem of supervised classification
and to introduce the different algorithms as particular cases of a common

3http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

bayesian_observer/
4http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

bayesian_observer/

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/bayesian_observer/
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framework before we apply them in Chapters V and VI. The goal is to intro-
duce these tools to experimental neuroscientists and psychophysicists so they
can properly understand the subsequent analysis we perform. Finally, having
a better understanding of supervised data analysis will be useful for experi-
mentalists to better craft their experiments. We provide the source code5 of
Examples 6 and 7 that illustrate Section 2.

3.5 Chapter V: Analysis of VSDi Data

Chapter V presents the visual system organization and its intracortical
connectivity. Then, we review the VSDi technique and its processing. We also
summarize the different machine learning approaches used to analyze func-
tional Magnetic Resonance Imaging (fMRI) and VSDi data. The first major
contribution of this chapter is an automatic method to select the number of
components of the Principal Component Analysis (PCA) based on the classi-
fication performances (see Section V.4.1). The second main contribution is a
methodology of local space-time analysis of classification performances, which
enables to identify the most predictive pixels and to precisely quantify the
temporal dynamic (see Section V.4.2). The third major contribution is the
definition of a simple and efficient model of the VSDi signal obtained using
oriented stimuli (see Section V.5). In addition, we make several minor bio-
logical contributions related to the experimental protocols that we analyze.
In particular, we find that activation of neural populations is faster when
stimulated after a blank than when stimulated after a first stimulus (see Sec-
tion V.4.3.2). Moreover, the simple proposed model supports the role of lateral
connections for a neural population to handle an abrupt change of stimulus
orientation (see V.5.3). We provide an online6 example of data synthesis using
the proposed model. Moreover, additional Figures are also available online7.

3.6 Chapter VI: Analysis of ER Data

Chapter VI introduces the Extracellular Recording (ER) technique, the
standard processings that are applied to this signal and the few machine learn-
ing approaches that have been used to analyze this type of data. The first
major contribution results from the use of MCs as stimuli. We find that small

5http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

examples_classif/
6http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

model_vsd/
7https://jonathanvacher.github.io/chapV-supp.html

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
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https://jonathanvacher.github.io/chapV-supp.html
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/model_vsd/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/model_vsd/
https://jonathanvacher.github.io/chapV-supp.html
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neural populations (few dozens of neurons) contain enough information to dis-
criminate between homogeneously and heterogeneously oriented stimuli. Such
populations also contain enough information to discriminate between stimuli
with narrow and broad spatial frequency bands (see Section VI.4). The sec-
ond major contribution is a methodology of temporal analysis of prediction
performances. We find that neural populations systematically have better
classification performances than any single neurons when stimulated by MCs
(see Section VI.5). However, when stimulated with natural movies, some neu-
rons that provides classification performances that are similar to these of the
entire population. The third major contribution is a simple Linear/Non-linear
Poisson (LNP) spiking neurons model that generates synthetic data (see Sec-
tion VI.6). When generated with MCs, the synthetic data provides results that
are similar to the these obtained on the experimental recordings. We provide
an online8 example of data synthesis using the proposed model and MCs.

8http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

lnp_spiking_neurons/
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Dynamic and Stochastic Models
for Visual Stimulation

In this chapter, we give a mathematical description of a dynamic texture
model specifically crafted to probe vision. It is first derived in a set of axiomatic
steps constrained by biological plausibility. We then detail contributions by
detailing three equivalent formulations of the Gaussian dynamic texture model.
First, the composite dynamic textures are constructed by the random aggrega-
tion of warped patterns, which can be viewed as 3D Gaussian fields. Second,
these textures are cast as solutions to a stochastic partial differential equation
(sPDE). This essential step enables real time, on-the-fly, texture synthesis us-
ing time-discretized auto-regressive processes. Finally, we use the stochastic
differential equation formulation from which the parameters are inferred from
texture examples, in order to perform synthesis.
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1 Introduction

1.1 Dynamic Texture Synthesis.

The model defined in (2.2) is quite simplistic with respect to the com-
plexity of natural scenes. It is therefore useful here to discuss solutions to
generative model problems previously proposed by texture synthesis methods
in the computer vision and computer graphics community. Indeed, the liter-
ature on the subject of static textures synthesis is abundant (eg [208]). Of
particular interest for us is the work of Galerne et al. [64, 63], which pro-
poses a stationary Gaussian model restricted to static textures and provides
an equivalent generative model based on Poisson shot noise. Realistic dynamic
texture models are however less studied, and the most prominent method is
the non-parametric Gaussian auto-regressive (AR) framework of Doretto [45],
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which has been thoroughly explored [213, 218, 35, 54, 91, 1]. These works
generally consists in finding an appropriate low-dimensional feature space in
which an AR process models the dynamics. Many of these approaches focus on
the feature space where decomposition such as Singular Value Decomposition
(SVD) and its Higher Order version (HOSVD) [45, 35] has shown their effi-
ciency. In [1], the feature space is the Fourier frequency, and the AR recursion
is carried over independently over each frequency, which defines the space-time
stationary processes. A similar approach is used in [213] to compute the av-
erage of several dynamic texture models. Properties of these AR models are
studied by Hyndman [91] where they found that higher order AR processes
are able to capture perceptible temporal features. A different approach aims
at learning the manifold structure of a given dynamic texture [110] while yet
another deals with motion statistics [157]. All these works have in common the
will to reproducing the natural spatio-temporal behavior of dynamic textures
with rigorous mathematical tools. In addition, our concern is to design a dy-
namic texture model that is precisely parametrized for experimental purposes
in visual neurosciences and psychophysics.

1.2 Stochastic Differential Equations (sODE and sPDE).

Stochastic Ordinary differential equation (sODE) and their higher dimen-
sional counter-parts, stochastic partial differential equation (sPDE) can be
viewed as continuous-time versions of these 1-D or higher dimensional auto-
regressive (AR) models. Conversely, AR processes can therefore also be used
to compute numerical solutions to these sPDE using finite difference approx-
imations of time derivatives. Informally, these equations can be understood
as partial differential equations perturbed by a random noise. The theoreti-
cal and numerical study of these sDE is of fundamental interest in fields as
diverse as physics and chemistry [196], finance [49] or neuroscience [56]. They
allow the dynamic study of complex, irregular and random phenomena such
as particle interactions, stocks’ or savings’ prices, or ensembles of neurons. In
psychophysics, sODE have been used to model decision making tasks in which
the stochastic variable represents some accumulation of knowledge until the
decision is taken, thus providing detailed information about predicted response
times [181]. In imaging sciences, sPDE with sparse non-Gaussian driving noise
has been proposed as model of natural signals and images [192]. As described
above, the simple motion energy model (2.3) can similarly be demonstrated to
rely on the sPDE (2.2) stochastic model of visual sensory input. This has not
previously been presented in a formal way in the literature. One key goal of the
current work is to comprehensively describe a parametric family of Gaussian
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sPDEs which generalize the modeling of moving images (and the correspond-
ing synthesis of visual stimulation) and thus allow for a fine-grained systematic
exploration of visual neurosciences and psychophysics.

1.3 Contributions

In this chapter, we attempt to engender a better understanding of hu-
man perception by improving generative models for dynamic texture synthesis.
From that perspective, we motivate the generation of optimal visual stimula-
tion within a stationary Gaussian dynamic texture model. We develop our
current model by extending, mathematically detailing and robustly testing
previously introduced dynamic noise textures [169, 178, 194] coined “Motion
Clouds” (MC or MCs). Our first contribution is a complete axiomatic deriva-
tion of the model, seen as a shot noise aggregation of dynamically warped
“textons”. Within our generative model, the parameters correspond to av-
erage spatial and temporal transformations (ie zoom, orientation and trans-
lation speed) and associated standard deviations of random fluctuations, as
illustrated in Figure 2.1, with respect to external (objects) and internal (ob-
servers) movements. A second contribution is the explicit demonstration of
the equivalence between this model and a class of linear sPDEs. This shows
that our model is a generalization of the well-known luminance conservation
equation 2.2. This sPDE formulation has two chief advantages: it allows for a
real-time synthesis using an AR recurrence and allows one to recast the log-
likelihood of the model as a generalization of the classical motion energy model,
which in turn is crucial to allow for Bayesian modeling of perceptual biases.
Finally, we provide the source code1 of this model of dynamic textures as an
open source software development and reproducible research, which is crucial
to advance the state of the art of real time stimulation for neurosciences. Some
additional examples of MCs and texture synthesis from examples are available
online2.

2 Axiomatic Construction of the Dynamic

Textures
Efficient dynamic textures to probe visual perception should be naturalistic

yet low-dimensional parametric stochastic models. They should embed mean-
ingful physical parameters (such as the effect of head rotations or whole-field

1http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

motion_clouds
2https://jonathanvacher.github.io/mc_examples.html
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http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
https://jonathanvacher.github.io/mc_examples.html
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scene movements, see Figure 2.1) into the local or global dependencies (e.g. the
covariance) of the random field. In the luminance conservation model (2.2),
the generative model is parameterized by a spatio-temporal coupling encoded
in the covariance Σ of the driving noise and the motion flow v0. This localized
space-time coupling (e.g. the covariance if one restricts its attention to Gaus-
sian fields) is essential as it quantifies the extent of the spatial integration area
as well as the integration dynamics. This is an important issue in neuroscience
when considering the implementation of spatio-temporal integration mecha-
nisms from very small to very large scales i.e. going from local to global visual
features [162, 17, 42]. In particular, this is crucial to understand the modular
sensitivity within the different lower visual areas. In primates for instance,
this is evident in the range of spatio-temporal scales of selectivity for generally
smaller features observed in the Primary Visual Cortex (V1) and in contrast,
ascending the processing hierarchy, for larger features in Middle Temple area
(MT). By varying the frequency bandwidth of such dynamic textures, distinct
mechanisms for perception and action have been identified in humans [178].
Our goal here is to develop a principled, axiomatic definition of these dynamic
textures.

2.1 From Shot Noise to Motion Clouds

We propose a mathematically-sound derivation of a general parametric
model of dynamic textures. This model is defined by aggregation, through
summation, of a basic spatial “texton” template g(x). The summation reflects
a transparency hypothesis, which has been adopted for instance in [64]. While
one could argue that this hypothesis is overly simplistic and does not model
occlusions or edges, it leads to a tractable framework of stationary Gaussian
textures, which has proved useful to model static micro-textures [64] and dy-
namic natural phenomena [213]. The simplicity of this framework allows for a
fine tuning of frequency-based (Fourier) parameterization, which is desirable
for the interpretation of psychophysical experiments with respect to underlying
spatio-temporal neural sensitivity.

We define a random field as

Iλ(x, t)
def.
=

1√
λ

∑

p∈N

g(ϕAp(x−Xp − Vpt)) (2.1)

where ϕa : R2 → R2 is a planar warping parameterized by a finite dimensional
vector a. The parameters (Xp, Vp, Ap)p∈N are independent and identically dis-
tributed random vectors. They account for the variability in the position of
objects or observers and their speed, thus mimicking natural motions in an
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Figure 2.1: Parameterization of the class of Motion Clouds stim-
uli. The illustration relates the parametric changes in MC with
real world (top row) and observer (second row) movements. (A)
Orientation changes resulting in scene rotation are parameterized
through θ as shown in the bottom row where a horizontal a and
obliquely oriented b MC are compared. (B) Zoom movements, ei-
ther from scene looming or observer movements in depth, are char-
acterized by scale changes reflected by a scale or frequency term
z shown for a larger or closer object b compared to more distant
a. (C) Translational movements in the scene characterized by V
using the same formulation for static (a) slow (b) and fast moving
MC, with the variability in these speeds quantified by σV . (ξ and
τ) in the third row are the spatial and temporal frequency scale
parameters. The development of this formulation is detailed in the
text.

ambient scene. The set of translations (Xp)p∈N is a 2-D Poisson point pro-
cess of intensity λ > 0. This means that, defining for any measurable A,
C(A) = ] {p ; Xp ∈ A}, one has that C(A) has a Poisson distribution with
mean λ|A| (where |A| is the measure of A) and C(A) is independent of C(B)
if A ∩B = ∅.

Intuitively, this model (2.1) corresponds to a dense mixing of stereotyped,
static, textons as in [64]. The originality is two-fold. First, the components of
this mixing are derived from the texton by visual transformations ϕAp which
may correspond to arbitrary transformations such as zooms or rotations, illus-
trated in Figure 1. Second, we explicitly model the motion (position Xp and
speed Vp) of each individual texton.
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In the following, we denote PA the common distribution of the i.i.d. (Ap)p,
and we denote PV the distribution in R2 of the speed vectors (Vp)p. Section 2.3
instantiates this model and proposes canonical choices for these variabilities.

The following result shows that the model (2.1) converges for high point
density λ→ +∞ to a stationary Gaussian field and gives the parameterization
of the covariance. Its proof follows from a specialization of [63, Theorem 3.1]
to our setting.

Proposition 1. Iλ is stationary with bounded second order moments. Its
covariance is Σ(x, t, x′, t′) = γ(x− x′, t− t′) where γ satisfies

∀ (x, t) ∈ R3, γ(x, t) =

∫∫∫

R2

cg(ϕa(x− νt))PV (ν)PA(a)dνda (2.2)

where cg = g ? ḡ is the auto-correlation of g. When λ → +∞, it converges
(in the sense of finite dimensional distributions) toward a stationary Gaussian
field I of zero mean and covariance Σ.

This proposition enables us to give a precise definition of a MC.

Definition 1. A Motion Cloud (MC) is a stationary Gaussian field whose
covariance is given by (2.2).

Note that, following [65], the convergence result of Proposition 1 could be
used in practice to simulate a Motion Cloud I using a high but finite value of
λ in order to generate a realization of Iλ. We do not use this approach, and
rather rely on the sPDE characterization proved in Section 3, which is well
tailored for an accurate and computationally efficient dynamic synthesis.

2.2 Toward “Motion Clouds” for Experimental Purposes

The previous Section provides a theoretical definition of MC 1 that is char-
acterized by cg, ϕa,PA and PV . The high dimension of these parameters has to
be reduced for experimental purposes, therefore it is essential to specify these
parameters to have a better control of the covariance γ. We further study this
model in the specific case where the warpings ϕa are rotations and scalings
(see Figure 2.1). They account for the characteristic orientations and sizes (or
spatial scales) in a scene with respect to the observer. We thus set

∀ a = (θ, z) ∈ [−π, π)× R∗+, ϕa(x)
def.
= zR−θ(x),

where Rθ is the planar rotation of angle θ. We now give some physical and
biological motivation underlying our particular choice for the distributions of



28 I. Dynamic and Stochastic Models for Visual Stimulation

the parameters. We assume that the distributions PZ and PΘ of spatial scales
z and orientations θ, respectively (see Figure 1), are independent and have
densities, thus considering

∀ a = (θ, z) ∈ [−π, π)× R∗+, PA(a) = PZ(z)PΘ(θ).

The speed vector ν is assumed to be randomly fluctuating around a central
speed v0 ∈ R2, so that

∀ ν ∈ R2, PV (ν) = P||V−v0||(||ν − v0||). (2.3)

In order to obtain “optimal” responses to the stimulation (as advocated by [217])
and based on the structure of a standard receptive field of V1, it makes sense
to define the texton to be equal to an oriented Gabor which acts as the generic
atom

gσ(x) =
1

2π
cos (〈x, ξ0〉) e−

σ2

2
||x||2 (2.4)

where σ is the inverse standard deviation and ξ0 ∈ R2 is the spatial frequency.
Since the orientation and scale of the texton is handled by the (θ, z) parameters,
we can impose without loss of generality the normalization ξ0 = (1, 0). In the
special case where σ → 0, gσ is a grating of frequency ξ0, and the image I
is a dense mixture of drifting gratings, whose power-spectrum has a closed
form expression detailed in Proposition 2. It is fully parameterized by the
distributions (PZ ,PΘ,PV ) and the central frequency and speed (ξ0, v0). Note
that it is possible to consider any arbitrary textons g, which would give rise to
more complicated parameterizations for the power spectrum ĝ, but we decided
here to stick to the simple asymptotic case of gratings.

Proposition 2. Consider the texton gσ , when σ → 0, the Gaussian field
Iσ(x, t) defined in Proposition 1 converges toward a stationary Gaussian field
of covariance having the power-spectrum

∀ (ξ, τ) ∈ R2 × R, γ̂(ξ, τ) =
PZ (||ξ||)
||ξ||2 PΘ (∠ξ)L(P||V−v0||)

(
−τ + 〈v0, ξ〉

||ξ||

)
,

(2.5)
where the linear transform L is such that

∀u ∈ R, L(f)(u)
def.
=

∫ π

−π
f(−u/ cos(ϕ))dϕ.

and ξ = (||ξ|| cos(∠ξ), ||ξ|| sin(∠ξ)).
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Proof. We recall the expression (2.2) of the covariance

∀ (x, t) ∈ R3, γ(x, t) =

∫∫∫

R2

cgσ(ϕa(x− νt))PV (ν)PA(a)dνda (2.6)

We denote (θ, ϕ, z, r) ∈ Γ = [−π, π)2 × R2
+ the set of parameters. Denoting

h(x, t) = cgσ(zRθ(x − νt)), one has, in the sense of distributions (taking the
Fourier transform with respect to (x, t))

ĥ(ξ, τ) = z−2ĝσ(z−1Rθ(ξ))
2δQ(ν) where Q =

{
ν ∈ R2 ; τ + 〈ξ, ν〉 = 0

}
.

Taking the Fourier transform of (2.6) and using this computation, the result
is that γ̂(ξ, τ) is equal to

∫

Γ

|ĝσ (z−1Rθ(ξ)) |2
z2

δQ(v0 + r(cos(ϕ), sin(ϕ)))PΘ(θ)PZ(z)P||V−v0||(r) dθdzdrdϕ.

Therefore when σ → 0, one has in the sense of distributions

|ĝσ
(
z−1Rθ(ξ)

)
|2 → δB(θ, z) where B =

{
(θ, z) ; z−1Rθ(ξ) = ξ0

}
.

Observing that δQ(ν)δB(θ, z) = δC(θ, z, r) where

C =

{
(θ, z, r) ; z = ||ξ||, θ = ∠ξ, r = − τ

||ξ|| cos(∠ξ − ϕ)
− ||v0|| cos(∠ξ − ∠v0)

cos(∠ξ − ϕ)

}

one obtains the desired formula.

Remark 1. Note that the envelope of γ̂ as defined in (2.5) is constrained to
lie within a cone in the spatio-temporal domain with the apex at zero. This
is an important and novel contribution when compared to a classical Gabor.
In particular, the bandwidth is then constant around the speed plane or the
orientation line with respect to spatial frequency. Basing the generation of
the textures on all possible translations, rotations and zooms, we thus provide
a principled approach to show that bandwidth should be parametrically scaled
with spatial frequency to provide a better model of moving textures.

2.3 Biologically-inspired Parameter Distributions

We now give meaningful specialization for the probability distributions PZ ,
PΘ, and P||V−v0||, which are inspired by some known scaling properties of the
visual transformations relevant to dynamic scene perception.
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Parameterization of PZ. First, small, centered, linear movements of the
observer along the axis of view (orthogonal to the plane of the scene) generate
centered planar zooms of the image. From the linear modeling of the observer’s
displacement and the subsequent multiplicative nature of zoom, scaling should
follow a Weber-Fechner law stating that subjective sensation when quantified
is proportional to the logarithm of stimulus intensity. Thus, we choose the
scaling z drawn from a log-normal distribution PZ , defined in (2.7). The
bandwidth σZ quantifies the variance in the amplitude of zooms of individual
textons relative to the characteristic scale z0. We thus define

PZ(z) ∝ z̃0

z
exp


−

ln
(
z
z̃0

)2

2 ln (1 + σ̃2
Z)


 , (2.7)

where ∝ means that we ignored the normalizing constant.
In practice, the parameters (z̃0, σ̃Z) are not convenient to manipulate be-

cause they have no “physical meaning”. Instead, we use another, more intu-
itive, parametrization using mode and variance (z0, σZ)

z0
def.
= argmaxz PZ(z) and σ2

Z
def.
= E(Z2)− E(Z)2.

Once (z0, σZ) are fixed, it is easy to compute the corresponding (z̃0, σ̃Z) to
plug into expression (2.7), simply by solving a polynomial equation (2.8), as
detailed in the following proposition.

Proposition 3. One has

z0 =
z̃0

1 + σ̃2
Z

and σ2
Z = z̃0σ̃

2
Z(1 + σ̃2

Z).

Such formula can be inverted by finding the unique positive root of

σ̃2
Z(1 + σ̃2

Z)2 − σ2
Z

z0

= 0 and z̃0 = z0(1 + σ̃2
Z). (2.8)

Proof. The primary relations are established using standard calculations from
the probability density function PZ [97]. The relations (2.8) follow standard
arithmetic.

Parametrization of PZ by mode and octave bandwidth Differences in
perception are often more relevant in a log domain, therefore it is useful to
parametrize PZ by its mode z0 and octave bandwidth BZ which is defined by

BZ
def.
=

ln
(
z+
z−

)

ln(2)
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where (z−, z+) are respectively the successive half-power cutoff frequencies,

that is, which verify PZ(z−) = PZ(z+) = PZ(z0)
2

with z− ≤ z+.

Proposition 4. One has

BZ =

√
8 ln(1 + σ̃2

Z)

ln(2)
and conversely σ̃Z =

√
exp

(
ln(2)

8
B2
Z

)
− 1. (2.9)

Proof. Using the fact that PZ(z−) = PZ(z+) = PZ(z0)
2

, one shows that X+ =

ln
(
z+
z0

)
and X− = ln

(
z−
z0

)
are the two roots of the following polynomial (with

X− ≤ X+).

Q(X) = X2 + 2 ln(1 + σ̃2
Z)X − 2 ln(2) ln(1 + σ̃2

Z) +
1

2
ln(1 + σ̃2

Z)2

This allows to compute BZ .

Through Proposition 4 it is possible to obtain the parametrization of band-
width prevalent in manipulations used in visual psychophysics experiments.

Parameterization of PΘ. Similarly, the texture is perturbed by variations
in the global angle θ of the scene: for instance, the head of the observer may
roll slightly around its normal position. The von-Mises distribution – as a good
approximation of the warped Gaussian distribution around the unit circle – is
an adapted choice for the distribution of θ with mean θ0 and bandwidth σΘ,

PΘ(θ) ∝ e
cos(2(θ−θ0))

4σ2
Θ (2.10)

Parameterization of P||V−v0||. We may similarly consider that the position
of the observer is variable in time. On first order approximation, movements
perpendicular to the axis of view dominate, generating random perturbations
to the global translation v0 of the image at speed ν − v0 ∈ R2. These per-
turbations are for instance described by a Gaussian random walk: take for
instance tremors, which are constantly jittering, small (6 1 deg) movements
of the eye. This justifies the choice of a radial distribution (2.3) for PV . This
radial distribution P||V−v0|| is thus selected as a bell-shaped function of width
σV , and we choose here a Gaussian function for simplicity

P||V−v0||(r) ∝ e
− r2

2σ2
V . (2.11)

Note that, as detailed in Section 3.2 a slightly different bell-function (with a
more complicated expression) should be used to obtain an exact equivalence
with the sPDE discretization.
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z0

σZ

σV

ξ1

τ

Slope: ∠v0

ξ2

ξ1
θ0

z0

σΘ
σZ

Two different projections of ||ξ||2γ̂(ξ, τ)
in Fourier space

t

MC of two different spatial
frequencies z0

Figure 2.2: Graphical representation of the covariance γ (left) —
note the cone-like shape of the envelopes– and an example of syn-
thesized dynamics for narrow-band and broad-band Motion Clouds
(right).

Putting everything together. Plugging these expressions (2.7), (2.10)
and (2.11) into the definition (2.5) of the power spectrum of the motion cloud,
one obtains a parameterization which shares similarities with the one originally
introduced in [178].

The following table recaps the parameters of the biologically-inpired MC
models. It is composed of the central parameters (v0) for the speed, (θ0)
for orientation and (z0) for the frequency modulus, as well as corresponding
“dispersion” parameters (σV , σΘ, BZ) which account for the typical deviation
around these centers.

Speed Freq. orient. Freq. amplitude
(mean, dispersion) (v0, σV ) (θ0, σΘ) (z0, BZ)

Figure 2.2 shows graphically the influence of these parameters on the shape of
the MC power spectrum γ̂.

We show in Figure 2.3 two examples of such stimuli for different spatial
frequency bandwidths. In particular, by tuning this bandwidth, in previous
studies it has been possible to dissociate its respective role in action and per-
ception [178]. Using this formulation to extend the study of visual perception
to other dimensions, such as orientation or speed bandwidths, should provide
a means to systematically titrate their respective role in motion integration
and obtain essential novel data.

3 sPDE Formulation and Synthesis Algorithm
In this section, we show that the MC model (Definition 1) can equally be

described as the stationary solution of a stochastic partial differential equa-
tion (sPDE). This sPDE formulation is important since we aim to deal with
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σZ = 0.25 σZ = 0.0625

Figure 2.3: Comparison of the broadband (left) vs. a narrowband
(right) stimulus. Two instances (left and right columns) of two
motions clouds having the same parameters except the frequency
bandwidths σZ , which were different. The top column displays iso-
surfaces of γ̂ in the form of enclosing volumes at different energy
values with respect to the peak amplitude of the Fourier spectrum.
The bottom column shows an isometric view of the faces of a movie
cube, which is a realization of the random field I. The first frame
of the movie lies on the (x1, x2, t = 0) spatial plane. The Motion
Cloud with the broadest bandwidth is often thought to best repre-
sent stereotyped natural stimuli, since, it similarly contains a broad
range of frequency components.

dynamic stimulation, which should be described by a causal equation which
is local in time. This is crucial for numerical simulations, since this allows
us to perform real-time synthesis of stimuli using an auto-regressive time dis-
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cretization. This is a significant departure from previous Fourier-based imple-
mentation of dynamic stimulation [169, 178]. Moreover, this is also important
to simplify the application of MC inside a Bayesian model of psychophysical
experiments (see Chapters II and III). In particular, the derivation of an equiv-
alent sPDE model exploits a spectral formulation of MCs as Gaussian Random
fields. The full proof along with the synthesis algorithm follows.

To be mathematically correct, all the sPDE in this article are written in
the sense of generalized stochastic processes (GSP) which are to stochastic
processes what generalized functions are to functions. This allows the consid-
eration of linear transformations of stochastic processes like differentiation or
Fourier transforms as for generalized functions. We refer to [193] for a recent
use of GSP and to [69] for the foundation of the theory. The connection be-
tween GSP and stochastic processes has been described by previous work [122]

3.1 Dynamic Textures as Solutions of sPDE

In the following, we first restrict our attention to the case v0 = 0 in order
to define a simple sPDE, and then detail the general case.

sPDE without global translation, v0 = 0. We first give the definition of
a sPDE cloud I making use of another cloud I0 without translation speed.

Definition 2. For a given stationary spatial covariance σw, 2-D spatial filters
(α, β) and a translation speed v0 ∈ R2, a sPDE cloud is defined as

I(x, t)
def.
= I0(x− v0t, t). (3.1)

where I0 is a stationary Gaussian field satisfying for all (x, t)

D(I0) =
∂W

∂t
where D(I0)

def.
=
∂2I0

∂t2
+ α ?

∂I0

∂t
+ β ? I0 (3.2)

where the driving noise ∂W
∂t

is white in time (i.e. corresponding to the tem-
poral derivative of a Brownian motion in time) and has the spatial stationary
covariance σW and ? is the spatial convolution operator.

The random field I0 solving (3.2) thus corresponds to a sPDE cloud with
no translation speed, v0 = 0. The filters (α, β) parameterizing this sPDE cloud
aim at enforcing an additional correlation in time of the model. Section 3.2
explains how to choose (α, β, σW ) so that these sPDE clouds, which are sta-
tionary solutions of (3.2), have the power spectrum given in (2.5) (in the case
that v0 = 0), i.e. are motion clouds.
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Defining a causal equation that is local in time is crucial for numerical
simulation (as explained in Section 3.3) but also to simplify the application of
MC inside a Bayesian model of psychophysical experiments (see Section 3).

The sPDE equation (3.2) corresponds to a set of independent stochastic
ODEs over the spatial Fourier domain, which reads, for each frequency ξ,

∀ t ∈ R,
∂2Î0(ξ, t)

∂t2
+ α̂(ξ)

∂Î0(ξ, t)

∂t
+ β̂(ξ)Î0(ξ, t) = σ̂W (ξ)

Ŵ (ξ, t)

∂t
(3.3)

where Î0(ξ, t) denotes the Fourier transform with respect to the spatial variable
x only. The Fourier transform of the stationary spatial covariance σ̂W (ξ)2 is
the spatial power spectrum of ∂W

∂t
and Ŵ (ξ, t+δt)−Ŵ (ξ, t) ∼ CN (0, δt) where

CN (0, δt) denotes the complex normal distribution of variance δt ie Ŵ (ξ, t +
δt) − Ŵ (ξ, t) is a white noise in space and time. While the equation (3.3)
should hold for all time t ∈ R, the construction of stationary solutions (hence
sPDE clouds) of this equation is obtained by solving the sODE (3.3) forward
for time t > t0 with arbitrary boundary conditions at time t = t0, and letting
t0 → −∞. This is consistent with the numerical scheme detailed in Section 3.3.

While it is beyond the scope of this paper to study theoretically the equa-
tion (3.2), one can show the existence and uniqueness results of stationary
solutions for this class of sPDE under stability conditions on the filers (α, β)
(see for instance [192, 25]) that are automatically satisfied for the particular
case of Section 3.2.

Theorem 1. If (α̂, β̂) are non-negative and
σ̂2
W

α̂β̂
∈ L1, then Equation (3.2) has

a unique causal and stationary solution, i.e. it defines uniquely the distribution
of a sPDE cloud.

Proof. Consider (3.3), the Fourier transform of (3.2) which has causal and
stationary solutions (see the general case of Levy-driven sPDE, Theorem 3.3
in [25]). Hence σ̂W

α̂β̂
∈ L1, these solutions have an integrable spatial power

spectrum. Then, one could take their inverse Fourier transform and get the
solution which is unique by construction.

Remark 2. There are different ways to define uniqueness of solution for
sPDE. In Theorem 1, uniqueness has to be understood in terms of sample path,
meaning that two solutions (X, X̃) of Equation (3.2) verifies P(∀t ∈ R, Xt =
X̃t) = 1. This notion of uniqueness is strong and it implies uniqueness in dis-
tribution meaning that X and X̃ have the same law.

sPDE with global translation. The easiest way to define and synthe-
size a sPDE cloud I with non-zero translation speed v0 is to first define I0
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solving (3.3) and then translating it with constant speed using (3.1). An al-
ternative way is to derive the sPDE satisfied by I, as detailed in the following
proposition. This is useful to define motion energy in Section 3.

Proposition 5. The MCs noted I with parameters (α, β, σw) and translation
speed v0 are the stationary solutions of the sPDE

D(I) + 〈G(I), v0〉+ 〈H(I)v0, v0〉 =
∂W

∂t
(3.4)

where D is defined in (3.2), ∂2
xI is the Hessian of I (second order spatial

derivative), where

G(I)
def.
= α ?∇xI + 2∂t∇xI and H(I)

def.
= ∇2

xI. (3.5)

Proof. This follows by computing the derivative in time of the warping equa-
tion (3.1), denoting y

def.
= x+ v0t

∂tI0(x, t) = ∂tI(y, t) + 〈∇I(y, t), v0〉,
∂2
t I0(x, t) = ∂2

t I(y, t) + 2〈∂t∇I(y, t), v0〉+ 〈∂2
xI(y, t)v0, v0〉

and plugging this into (3.2) after remarking that the distribution of ∂W
∂t

(x, t)
is the same as the distribution of ∂W

∂t
(x− v0t, t).

3.2 Equivalence between the spectral and sPDE formu-
lations

Since both MCs and sPDE clouds are obtained by a uniform translation
with speed v0 of a motionless cloud, we can restrict without loss of generality
our analysis to the case v0 = 0.

In order to relate MCs to sPDE clouds, equation (3.3) makes explicit that
the functions (α̂(ξ), β̂(ξ)) should be chosen in order for the temporal covari-
ance of the resulting process to be equal (or at least to approximate well) the
temporal covariance appearing in (2.5). This covariance should be localized
around 0 and be non-oscillating. It thus makes sense to constrain (α̂(ξ), β̂(ξ))
for the corresponding ODE (3.3) to be critically damped, which corresponds
to imposing the following relationship

∀ ξ, α̂(ξ) =
2

ν̂(ξ)
and β̂(ξ) =

1

ν̂2(ξ)

for some relaxation step size ν̂(ξ). The model is thus solely parameterized by
the noise variance σ̂W (ξ) and the characteristic time ν̂(ξ).
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The following proposition shows that the sPDE cloud model (3.2) and the
motion cloud model (2.5) are identical for an appropriate choice of function
P||V−v0||.

Proposition 6. When considering

∀ r > 0, P||V−v0||(r) = L−1(h)(r/σV ) where h(u) = (1 + u2)−2 (3.6)

where L is defined in (2.5), equation (3.2) admits a solution I which is a
stationary Gaussian field with power spectrum (2.5) when setting

σ̂2
W (ξ) =

4

ν̂(ξ)3||ξ||2PZ(||ξ||)PΘ(∠ξ), and ν̂(ξ) =
1

σV ||ξ||
. (3.7)

Proof. For this proof, we denote IMC the motion cloud defined by (2.5), and I
a stationary solution of the sPDE defined by (3.2) which exists according to
Theorem 1 because σ̂2

W ν̂
3 ∈ L1, indeed PZ and PΘ are probability distributions

and ξ 7→ 1
||ξ||2 does not change the continuity at 0. We aim to show that under

the specification (3.7), they have the same covariance. This is equivalent to
showing that IMC

0 (x, t) = IMC(x+ ct, t) has the same covariance as I0. For any
fixed ξ, equation (3.3) admits a unique stationary solution Î0(ξ, ·) (Theorem
1) which is a stationary Gaussian process of zero mean and with a covariance
which is σ̂2

W (ξ)r? r̄ where r is the impulse response (i.e. taking formally a = δ)
of the ODE r′′ + 2r′/u + r/u2 = a where we denoted u = ν̂(ξ). This impulse
response can be shown to be r(t) = te−t/u1R+(t). The covariance of Î0(ξ, ·)
is thus, after some computation, equal to σ̂2

W (ξ)r ? r̄ = σ̂2
W (ξ)h(·/u) where

h(t) = u3

4
(1+ |t|)e−|t|. Taking the Fourier transform of this equality, the power

spectrum γ̂0 of I0 thus reads

γ̂0(ξ, τ) =
1

4
σ̂2
W (ξ)ν̂(ξ)3h̃(ν̂(ξ)τ) where h̃(s) =

1

(1 + s2)2
(3.8)

and where it should be noted that this function h is the same as the one
introduced in (3.6). The covariance γMC of IMC and γMC

0 of IMC
0 are related by

the relation

γ̂MC

0 (ξ, τ) = γ̂MC(ξ, τ − 〈ξ, v0〉) =
1

||ξ||2PZ(||ξ||)PΘ (∠ξ) ĥ

(
− τ

σV ||ξ||

)
. (3.9)

where we used the expression (2.5) for γ̂MC and the value of L(P||V−v0||) given
by (3.6). Condition (3.7) guarantees that expression (3.8) and (3.9) coincide,
and thus γ̂0 = γ̂MC

0 .
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Expression for P||V−v0||. Equation (3.6) states that in order to obtain a
perfect equivalence between the MC defined by (2.5) and by (3.2), the function
L−1(h) has to be well-defined. It means we need to compute the inverse of the
transform of the linear operator L

∀u ∈ R, L(f)(u) = 2

∫ π/2

0

f(−u/ cos(ϕ))dϕ.

to the function h. The following proposition gives a closed-form expression
for this function, and shows in particular that it is a function in L1(R), i.e.
it has a finite integral, which can be normalized to unity to define a density
distribution. Figure 3.1 shows a graphical display of that distribution.

Proposition 7. One has

L−1(h)(u) =
2− u2

π(1 + u2)2
− u2(u2 + 4)(log(u)− log(

√
u2 + 1 + 1))

π(u2 + 1)5/2
.

In particular, one has

L−1(h)(0) =
2

π
and L−1(h)(u) ∼ 1

2πu3
when u→ +∞.

Proof. The variable substitution x = cos(ϕ) can be used to rewrite (3.2) as

∀u ∈ R, L(h)(u) = 2

∫ 1

0

h
(
−u
x

) x√
1− x2

dx

x
.

In such a form, we recognize a Mellin convolution which could be inverted by
the use of Mellin convolution table [137].

3.3 AR(2) Discretization of the sPDE

Most previous works for Gaussian texture synthesis (such as [64] for static
and [169, 178] for dynamic textures) have used a global Fourier-based approach
and the explicit power spectrum expression (2.5). The main drawbacks of such
an approach are: (i) it introduces an artificial periodicity in time and thus can
only be used to synthesize a finite number of frames; (ii) these frames must be
synthesized at once, before the stimulation, which prevents real-time synthesis;
(iii) the discrete computational grid may introduce artifacts, in particular when
one of the included frequencies is of the order of the discretization step or when
a bandwidth is to small.
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Figure 3.1: Functions h and L−1(h).

To address these issues, we follow the previous works of [45, 213] and make
use of an auto-regressive (AR) discretization of the sPDE (3.2). In contrast
with these previous works, we use a second order AR(2) regression (in place
of a first order AR(1) model). Using higher order recursions is crucial to make
the output consistent with the continuous formulation (3.2). Indeed, numer-
ical simulations show that AR(1) iterations lead to unacceptable temporal
artifacts: in particular, the time correlation of AR(1) random fields typically
decays too fast in time.

AR(2) synthesis without global translation, v0 = 0. The discretization

computes a (possibly infinite) discrete set of 2-D frames (I
(`)
0 )`>`0 separated by

a time step ∆, and we approach at time t = `∆ the derivatives as

∂I0(·, t)
∂t

≈ ∆−1(I
(`)
0 − I(`−1)

0 ) and
∂2I0(·, t)
∂t2

≈ ∆−2(I
(`+1)
0 + I

(`−1)
0 − 2I

(`)
0 ),

and
∂W (·, t)
∂t

≈ ∆−1(W (`) −W (`−1))

which leads to the following explicit recursion ∀ ` > `0,

I
(`+1)
0 = (2δ−∆α−∆2β)?I

(`)
0 +(−δ+∆α)?I

(`−1)
0 +∆(W (`)−W (`−1)), (3.10)

where δ is the 2-D Dirac distribution and where (W (`) − W (`−1))` are i.i.d.

2-D Gaussian field with distribution N (0,∆σW ), and (I
(`0)
0 , I

(`0−1)
0 ) can be

arbitrary initialized.
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One can show that when `0 → −∞ (to allow for a long enough “warmup”
phase to reach approximate time-stationarity) and ∆ → 0, then I∆

0 defined
by interpolating I∆

0 (·,∆`) = I(`) converges (in the sense of finite dimensional
distributions) toward a solution I0 of the sPDE (3.2). Here we choose to use
the standard finite difference however we refer to [191, 26] for more advanced
discretization. We implemented the recursion (3.10) by computing the 2-D
convolutions with FFT’s on a GPU, which allows us to generate high resolution
videos in real time, without the need to explicitly store the synthesized video.

AR(2) synthesis with global translation. The easiest way to approxi-
mate a sPDE cloud using an AR(2) recursion is to simply apply formula (3.1)

to (I
(`)
0 )` as defined in (3.10), that is, to define

I(`)(x)
def.
= I

(`)
0 (x− v0∆`).

A second alternative approach would be to directly discretized the sPDE (3.4).
We did not use this approach because it requires the discretization of spatial
differential operators G and H, and is hence less stable. A third, somehow
hybrid, approach, is to apply the spatial translations to the AR(2) recursion,
and define the following recursion

I(`+1) = Uv0 ? I
(`) + Vv0 ? I

(`−1) + ∆(W (`) −W (`−1)), (3.11)

where

{
Uv0

def.
= (2δ −∆α−∆2β) ? δ−∆v0 ,

Vv0

def.
= (−δ + ∆α) ? δ−2∆v0 ,

(3.12)

where δs indicates the Dirac at location s, so that (δs ? I)(x) = I(x − s)
implements the translation by s. Numerically, it is possible to implement (3.11)
over the Fourier domain,

Î(`+1)(ξ) = Ûv0(ξ)Î(`)(ξ) + V̂v0(ξ)Î(`−1)(ξ) + ∆σ̂W (ξ)(ŵ(`)(ξ)− ŵ(`−1)(ξ)),

where

{
Ûv0(ξ)

def.
= (2−∆α̂(ξ)−∆2β̂(ξ))e−i∆v0ξ,

Q̂v0(ξ)
def.
= (−1 + ∆α̂(ξ))e−2i∆v0ξ,

and where w(`) − w(`−1) is a 2-D white noise with distribution N (0,∆).

4 Synthesis from Examples
When developing a generative model of dynamic textures, it is important to

quantify how well it is able to synthesize real dynamic textures. In this section,
we present a way to perform dynamic textures synthesis from examples based
on the sPDE model. Although the formulation is continuous, the approach
is similar to the several AR methods presented in Section 1.1. However, as a
continuous model the inference of sPDE coefficients can be improved, see [26].



4. Synthesis from Examples 41

4.1 sPDE with convolution coefficients

First let T = R2/Z2. Then, for all (f, g) ∈ F(T 2,C)2 where F(T 2,C) is
the space of functions from T 2 to C, we denote Pf,g(X) = X2 + fX + g. We
now define the stability set

S = {(f, g)|∀x ∈ T,∀z ∈ P−1
f(x),g(x)({0}),<(z) < 0}. (4.1)

The set S is the space of function that ensure the stability of solutions of a
set of second order linear stochastic equations. One must think to the simple
second order linear non-stochastic case where the stability is ensured when the
eigenvalues of the linear operator have negative real part. We consider the
second order linear sPDE with convolutive coefficients as in Equation (3.2):

∂2F

∂t2
+ α ?

∂F

∂t
+ β ? F =

∂W

∂t
(4.2)

where ? is the spatial convolution and (α̂, β̂) ∈ S. The source term ∂W
∂t

is
a Gaussian process white in time and with spatial stationary covariance σW .
As we work on the torus T . We do not use space Fourier transform but a
space Karhunen-Loève representation of the Gaussian process. The goal is the
same as using the Fourier transform, it allows to rewrite Equation (4.2) in the
frequency domain.

Proposition 8. Karhunen-Loève Transform of a Gaussian Process Let N be
a Gaussian process white in time and with spatial stationary covariance σW .
Then there exist N̂ ,

∀t ∈ R, N(x, t) =
∑

n∈Z2

N̂(n, t) exp (2iπ〈n, x〉)

where N(n, t) ∼ CN (0, σ̂W (n)) and CN (0, σ̂W (n)) denotes the complex normal
distribution of variance σ̂W (n).

Proof. See [207] for details.

Applying the Karhunen-Loève transform to Equation (4.2) is useful because
it “diagonalizes” the convolution operators. The Karhunen-Loève transform
of the solution of Equation (4.2) can therefore be obtained in the frequency
domain by solving a set of second linear stochastic differential equations. We
have the following proposition.

Proposition 9. For all n ∈ Z2, F̂ (n, ·) is solution of

∀ t ∈ R,
∂2F̂ (n, t)

∂t2
+ α̂

∂F̂ (n, t)

∂t
+ β̂F̂ (n, t) =

∂Ŵ (n, t)

∂t
(4.3)

where N(n, t) ∼ CN (0, σ̂W (n)).
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Proof. The proof is the direct application of the Karhunen-Loève transform
and use the linearity of Equation (4.2).

It useful to derive the probability distribution at a fixed time and frequency
(t, n) ∈ R× Z.

Proposition 10. The solution F̂ (n, t) has the following probability density
function:

P(F̂ (n, t)|α̂, β̂, Ĉ) ∝ 1√
Ĉ(n)

exp


−

∣∣∣Lα,β(F̂ )(n, t)
∣∣∣
2

2σ̂W (n)




where Lα,β(F̂ )(n, t) = ∂2F̂ (n,t)
∂t2

+ α̂(n)∂F̂ (n,t)
∂t

+ β̂(n)F̂ (n, t).

Proof. As an invertible linear operator Lα,β allows to express F̂ (n, t) as a linear

function of ∂Ŵ (n,t)
∂t

which gives the expected distribution.

The probability density function expressed in Proposition 10 allows to
adopt a maximum likelihood estimation strategy. The log-likelihood and the
parameters (α̂m, β̂m, Ĉm) that minimize it are summarized in the following
proposition.

Proposition 11. Assume that we have samples (F̂ (n, t))(n,t)∈Ω̂N×ΩNT
where

Ω̂N = {1, . . . , N}2 and ΩNT = {1, . . . , NT}. The log-likelihood writes

l(α̂, β̂, Ĉ) =
∑

t∈ΩNT

∑

n∈Ω̂N

1

2Ĉ(n)

∣∣∣Lα,β(F̂ )(n, t)
∣∣∣
2

+
1

2
log
(
Ĉ(n)

)

The triplet (α̂m, β̂m, Ĉm) that minimizes l verify

∀n ∈ Ω̂N , A(n)

(
α̂m(n)

β̂m(n)

)
= b(n)

where ∀n ∈ Ω̂N ,

A(n) =




∑

t∈ΩNT

∣∣∣∂2F̂ (n,t)
∂t2

∣∣∣
∑

t∈ΩNT

∂F̂ (n,t)
∂t

F (n, t)

∑

t∈ΩNT

F (n, t)∂F̂ (n,t)
∂t

∑

t∈ΩNT

∣∣∣F̂ (n, t)
∣∣∣
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and

b(n) =




−
∑

t∈ΩNT

∂F̂ (n,t)
∂t

∂2F̂ (n,t)
∂t2

−
∑

t∈ΩNT

F (n, t)∂
2F̂ (n,t)
∂t2


 .

The parameter Ĉm thus writes

∀n ∈ ΩN , Ĉm(n) =
1

Nt

∑

t∈ΩNT

∣∣∣Lαm,βm(F̂ )(n, t)
∣∣∣
2

.

Thus, we can implement a texture synthesis algorithm from examples based
on Proposition 11.

4.2 Examples of Synthesis

We display here some examples of dynamic textures. Videos are available
online1. We detail below the different steps of the algorithm. In particular,
we follow the preprocessing used in [23]: we perform color synthesis by using
a PCA on the RGB color channels and we handle edges by using the “Peri-
odic+Smooth” decomposition [127].

Algorithm Assume that we have a dynamic texture sample (F (x, t))(x,t)∈ΩN×ΩNT
projected on the first component of the PCA color space.

• For each time t ∈ ΩNT , compute the 2D Fast Fourier Transform (fft)

F̂ (·, t)) of F (·, t),

• For each time t ∈ ΩNT , compute the fft of the periodic component˜̂F (·, t))
of F̂ (·, t)),

• Use Proposition 11 to infer (α̂m, β̂m, Ĉm) (time derivative are approxi-
mated by finite differences),

• Use the algorithm describe in Section 3.3 to perform synthesis.

In Figure 4.1, we show frames extracted from natural texture examples vs
frames extracted from synthesized textures. We observe that the model is
not able to reproduce spatial edges and sharp contrasts unless they arise from
approximate spatial periodicity. This is not surprising as our model suppose

1https://jonathanvacher.github.io/mc_examples.html

https://jonathanvacher.github.io/mc_examples.html
https://jonathanvacher.github.io/mc_examples.html
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that textures are Gaussian and stationary which is generally not verified by
natural textures. This remark is also valid for the temporal dynamic.

Our code is commented and available online2.

5 Conclusion
We have proposed and detailed a generative model of dynamic textures

based on a formalization of small perturbations from the observer’s point of
view during parameterized rotations, zooms and translations. We connected
these transformations to descriptions of ecologically motivated movements of
both observers and the dynamic world. The fast synthesis of naturalistic tex-
tures optimized to probe motion perception was then demonstrated, through
fast GPU implementations applying auto-regression techniques with much po-
tential for future experiments. Indeed, even if there exists some mathematical
issues (delay,. . . ) that we do not mention in details, the real-time synthesis
algorithm allows to modify the model parameters over time (ie the covariance
can be time dependent). We can imagine in a the future to control delay and
to modify the parameters in real time to maximize the responses of neurons.
This extends previous work from [169] by providing an axiomatic formulation.
Finally, we detail a way to perform texture synthesis by maximum likelihood
estimation of the sPDE coefficients. Such a synthesis algorithm can be useful
for visual stimulation as it allows one to run experimental protocols that test
natural dynamic textures versus their synthesis.

2http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

motion_clouds

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
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Figure 4.1: From top to bottom: alternating of five frames ex-
tracted from original textures and five frames of their synthesis
(clouds, fire, goldenline, motion clouds).
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? II ?

Bayesian Inference Models for
Psychophysics

In this chapter, we describe a mathematical formulation of an ideal Bayesian
observer model. We develop a probabilistic formalism in order to properly de-
fine the concept of an observer’s internal representations. In particular, we
define in mathematical terms the notion of psychometric curve obtained in a
two-alternate forced choice (2AFC) experiment. This general definition, com-
bined with our ideal Bayesian observer model appears intractable in absence
of specific assumptions. We thus exemplify the psychometric curve by mak-
ing simplifying assumptions. Finally, we provide an algorithm which allows to
solve the inverse Bayesian inference problem and we give numerical examples.
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1 Introduction
This chapter aims at introducing a probabilistic framework for the analysis

of psychophysical data that goes from stimulation parameters to their repre-
sentation in the brain of an observer. In particular we focus on the modeling
of discriminating tasks such as 2AFC or staircase procedure. While in this
manuscript we focus on vision, we develop ideas that are not restrictive and
can often be applied to other perception. This modeling is very much inspired
by several recent work on the notion of inverse Bayesian inference (see bellow
for the relevant litterature) and is in particular aiming for a rigorous formula-
tion of the problem and a specific instantiation of a numerical inverse problem
solver, that we use in chapter III to address speed discrimination.
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1.1 Bayesian Brain

The “Bayesian brain” hypothesis is first a probabilistic theory. Among the
probabilistic approaches to vision, it is important to mention the book of Des-
olneux, Moisan and Morel [41] who develop a set of statistical tools for image
analysis based on Gestalt theory. The Bayesian interpretation of perception
comes from the Helmholtz Machine principle [38]. The perceptual system is
viewed as a statistical inference machine whose role is to infer the causes of
sensory input. There is now a great interest for the Bayesian approaches as it
is well suited to handle uncertainty, ambiguity and complexity [46, 34, 102].
However, when it comes to say that the brain performs Bayesian computa-
tions, there is still a lot of experimental data to confront [103, 106, 150]. The
claim that the brain is Bayesian optimal is wisely criticized and discussed by
Bowers [21]. Finally, we highlight some interesting works in physiology that
formulates a way neural populations could perform Bayesian computations [94,
72, 151].

1.2 Inverse Bayesian Inference

The stochastic and dynamic generative models developed in Chapter I are
closely related to the likelihood and prior models which serve to infer motion
estimates from the dynamic visual stimulation [3] . In order to account for
perceptual bias, a now well-accepted methodology in the field of psychophysics
is to assume that observers are “ideal observers” and therefore make decisions
using optimal statistical inference (typically a maximum-a-posteriori or MAP
estimator) which combines this likelihood with some internal prior (see Intro-
duction Equation (2.1)). Several experimental studies use this hypothesis as
a justification for the observed perceptual biases by proposing some adjusted
likelihood and prior models [46, 34], and more recent works pushes this ideas
even further. Observing some perceptual bias, is it possible to “invert” this
forward Bayesian decision making process, and infer the (unknown) internal
prior that best fit a set of observed experimental choices made by observers?
While a few previous works have raised similar questions (see below), its pre-
cise formulation and resolution is still an open problem both theoretically and
numerically. Indeed, in traditional Bayesian inference approaches an estimator
is computed from given likelihood and prior [22]. In contrast, here we have
access to parameters and estimates from which we want to infer a likelihood
and prior. Following [184], we coined this promising methodology “inverse
Bayesian inference”. This is of course an ill-posed inverse problem, in par-
ticular there is multiplicative ambiguity between the likelihood and prior. In
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addition, it is a highly non-linear. For all these reasons, it is clear that addi-
tional constraints on both the prior and the likelihood are needed to make it
tractable. For instance [182, 184, 96] impose smoothness constraints in order
to be able to locally fit the slope of the prior.

1.3 Contributions

We formalize the concept of observer’s internal representations in a prob-
abilistic model. In this model, we are able to formulate the “Bayesian brain”
hypothesis: our brain estimates external parameters as if they have generated
the sensory representation. Then, we are able to define in mathematical terms
the notion of psychometric curve obtained in a two-alternate forced choice
(2AFC) experiment. This general definition, combined with our ideal Bayesian
observer model appears intractable in absence of specific assumptions. We thus
exemplify the psychometric curve by making simplifying assumptions on the
likelihood and prior and we give numerical examples. Finally, we provide an
algorithm which allows to solve the inverse Bayesian inference problem and we
also give a numerical example.

2 From Stimulation to Internal Representation

2.1 Model Description and Bayesian Assumptions

In a typical experimental context, the experimenter only knows the param-
eters of the stimulation q ∈ Q, the stimuli i ∈ I and the yes-no answers of
the different subject to some discrimination tasks. Chapter I deals with the
connection between parameters and stimulation which we addressed by build-
ing a random generative model of stimulation. Figure 2.1 depicts the current
situation. In order to understand what happens between the perception of an

q1 i1

q2 i2

unknown steps
yes-no
answers

Figure 2.1: The partial knowledge provided by a psychophysics
experiment. In the ideal case, parameters q1 and q2 allow to gener-
ate stimuli i1 and i2 from which the subject answers to an experi-
mental yes-no question.

observer and the answer he produces, it is important to make some assump-
tions based on our current understanding of the brain architecture. Indeed,
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we know that some neurons respond or not to a particular stimulation. A typ-
ical example is the mostly known case of orientation selectivity in the primary
visual cortex of many mammals [87]. It is thus reasonable to assume that the
brain is making some measurements m ∈M based on the perceived stimulus.
Such measurements allow the observer to perform an estimation q̂ ∈ Q̂ of the
parameters questioned by the experimenter. Finally, these estimations are used
to provide a yes-no answer to a detection or a discrimination task. In a prob-
abilistic setting, the variables q, i,m and q̂ are realizations Q(ω), I(ω),M(ω)
and Q̂(ω) of the random variables Q, I,M and Q̂. For simplicity, we assume
that Q̂ only depends on M which only depends on I, which only depends on
Q and that these random variables have respectively the following densities
PQ̂|M , PM |I , PI|Q and PQ. Hence, we complete the “unknown steps” box of
Figure 2.1 by abstract measurement and estimation steps that we suppose to
be performed by an observer, see Figure 2.2. This modeling pipeline is close
to those presented in recent literature, see for instance [184]. However, it is
not Bayesian yet.

i1 = I1(ω) m1 = M1(ω) q̂1 = Q̂1(ω)q1 = Q1(ω)

Q1 ∼ PQ1
I1 ∼ PI1|Q1 M1 ∼ PM1|I1 Q̂1 ∼ PQ̂1|M1

i2 = I2(ω) m2 = M2(ω) q̂2 = Q̂2(ω)q2 = Q2(ω)

Q2 ∼ PQ2
I2 ∼ PI2|Q2 M2 ∼ PM2|I2 Q̂2 ∼ PQ̂2|M2

abstract completion

yes-no
answer

Figure 2.2: An abstract completion of the partial knowledge pro-
vided by a psychophysics experiment. The observer makes mea-
sures m1 and m2 of the stimulation which provides information to
compute estimates q̂1 and q̂2 of the parameters questioned by the
experiment.

First, let us focus on the underlying hypothesis of the model: the generative
model of of stimulation (movies in the case of MC), the measurement and
estimation steps. Obviously, the main underlying hypothesis in such Bayesian
approaches is that the brain is able to encode probability distribution. Some
works tackles this question experimentally in electrophysiology [94, 72, 111].

Generative Model First, we assume that stimuli came from a generative
model conditioned by some relevant parameters that have their proper distri-
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bution. This perfectly fit the class of MC model designed in Chapter I. Such
an assumption is strong because when confronted to natural images, their high
complexity cannot be captured by a small number of parameters (see Intro-
duction, Section 2.1). Therefore, generative models of natural movies are still
out of reach.

Measurement Second, we assume that the measurement depends only on
the stimulus. This hypothesis is based on the idea that neurons respond to
certain stimulus features like spatio-temporal frequency, speed, orientation,
motion direction, . . . ) [120, 153, 39, 13]. Although – a large part of neurons
activity is still not understood, this assumption is reasonable.

Estimation Finally, we suppose an estimation step. Although it appears
natural to perform an estimation from measurement, to the best of our knowl-
edge, there is no clear experimental evidence that some neural circuits directly
implements this function. This step can be understood as taking into account
a direct comparison of the measurement made on different stimuli. We refer
to the of Acuna et al. [2] that discuss the related question of whether the brain
activity can be interpreted as rather sampling from some posterior distribution
or only seeks for a maximum likelihood-type estimate.

Bayesian Assumptions Our model allows to formulate two different as-
sumptions that are commonly made in Bayesian observer modeling: the Bayesian
estimation and the natural prior hypotheses [150]. We formulate these hypoth-
esis using our notations.

Assumption 1 (Bayesian Estimation). The random variable Q̂ is estimating
q as if it had directly generated the measurement m ie

PM |Q̂(m|q) = PM |Q(m|q).

Assumption 1 combined with Bayes theorem allows to compute the distri-
bution of Q̂ knowing M as:

PQ̂|M(q̂|m) =
PM |Q̂(m|q̂)PQ̂(q̂)

PM(m)
=

PM |Q(m|q̂)PQ̂(q̂)

PM(m)
.

Before we impose this assumption, our model was only probabilistic because
the probability PQ̂|M(q̂|m) does not assume any estimation strategy but only

a causal relation between M and Q̂. Assumption 1 is the key that make our
model a Bayesian one.
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Assumption 2 (Natural Prior). The internal observer prior is supposed to
reflect the natural environment ie

PQ̂(q) = PQ(q).

Assumption 2 means that the random variable Q̂, which is internal to the
observer, has the same distribution as Q which is external. Obviously here, PQ
is considered to represent the frequencies of different values taken by Q in a
natural environment and not during an experiment. Therefore, when studying
vision, the expected priors on image features is expected to ressemble those
estimated from natural movies see [150, 67].

In order to analyze data using this model, one still needs to specify at least
two distributions:

• the prior PQ(q),

• and the likelihood PM |Q(m|q).
We will exemplify these choices in Sections 3 and detail how they leads to
several (closely related but different) data analysis methodologies in Section 4.

2.2 Psychometric Curve

A discrimination task experiment always involves at least two parameters
(one for each of the two replications to discriminate between), so, for read-
ability, we denote in bold any couple of variables x = (x1, x2). We call the
estimated parameters q̂ “outputs” as opposed to the experimental parameters
q called “inputs”. Following the model described above (see also Figure 2.2),
two stimuli i generated with inputs q are presented to a subject, the former
makes some internal measurement m and estimates the inputs by q̂. He can
therefore compare them to answer the yes-no question that actually represents
one sample of a binary event E ⊂ Q2 specific to the subject. What is impor-
tant to note is that the sample is obtained knowing that the stimulation have
been generated independently using two “input” parameters q. Then, we can
define the abstract psychometric curve as a function of the input parameters.

Definition 3. The psychometric function is the probability that Q̂ belongs to
E knowing that Q = q

ϕE(q)
def.
= PQ̂|Q(E|q) = EQ̂|Q(1E|q).

where we denoted 1E the indicator function of E

1E(q) =

{
1 if q ∈ E,
0 otherwise.
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Example 1. A typical example, if q denotes a speed, is to test for speed dis-
crimination by setting

E
set
= {(q̂1, q̂2) ; q̂1 > q̂2} ,

i.e. whether the first stimulation appears faster than the second one to the
user.

Now, we give a decomposition formula of the psychometric curve by taking
into account the full model described in Figure 2.2 and the Bayesian Assump-
tions 1 and 2.

Proposition 12. The psychometric curve verifies

ϕE(q) =

∫

Q2

∫

M2

1E(q̂)
PM |Q(m|q̂)PM |Q(m|q)PQ(q̂)

PM (m)
dq̂dm

with

PM |Q(m|q) =

∫

I2

PM |I(m|i)PI|Q(i|q)di

and where we denoted 1E the indicator function of E

1E(q) =

{
1 if q ∈ E,
0 otherwise.

Proof. First, we write

ϕE(q) =

∫

Q2

1E(q̂)PQ̂|Q(q̂|q)dq̂

Then, we plug successively the two following decompositions

PQ̂|Q(q̂|q) =

∫

M2

PQ̂|M (q̂|m)PM |Q(m|q)dm

and

PM |Q(m|q) =

∫

I2

PM |I(m|i)PI|Q(i|q)di.

Finally, Assumptions 1 and 2 lead to the result.

Proposition 12 is crucial to understand the Bayesian inverse inference prob-
lem. Indeed, we make the connection between the psychometric curve, which is
a fundamental function usually sampled in a psychophysical experiment, and
the likelihood PM |Q and prior PQ. The Bayesian inverse inference problem
consists in determining the likelihood PM |Q and prior PQ from the samples
of psychometric curve ϕE(q). In the form expressed in Proposition 12 and in
absence of any assumption the inverse Bayesian inverse problem appear too
difficult. In the following section, we make strong hypothesis that allow for
closed form computations.



2. From Stimulation to Internal Representation 55

2.3 A Closed Form Example

In this section, we adopt the same assumption as Stocker [184] by assum-
ing a Gaussian measure and a Laplacian prior. This allows for closed-form
approximate of PQ̂|Q and thus of the psychometric curve. Although we do not
assume any estimator, these assumptions allow for the computation of the bias
aσ2 that is equal to the one introduced in [184].

Proposition 13. Suppose that

• PM |Q(m|q) = 1√
2πσ

exp
(
− (m−q)

2σ2

)
with q ∈ R and σ > 0 ,

• and PQ(q) = a exp (−aq) with a > 0.

When σ → 0, one has

PQ̂|Q(q̂|q) =
1√

2π(
√

2σ)
exp

(
− 1

2(
√

2σ)2
(q̂ − q + aσ2)2

)
(1 + o(1)).

This formula corresponds intuitively to the fact that the prior shifts the
likelihood to give the posterior. Here, the posterior is approximately a Gaus-
sian of standard deviation

√
2σ and mean q − aσ2. The shift comes from the

combination of the prior parameter a and likelihood (v, σ). This is expected if
one wants to explain perceptual bias.

Proof. First, we use the standard decomposition of probabilities and the Bayes
formula combined with Assumption 1 and 2. Therefore,

PQ̂|Q(q̂|q) =

∫

M
PQ̂|M(q̂|m)PM |Q(m|q)dm

=

∫

M

PM |Q(m|q̂)PQ(q̂)

PM(m)
PM |Q(m|q)dm

= PQ(q̂)

∫

M

PM |Q(m|q̂)PM |Q(m|q)
PM(m)

dm. (2.1)

In the expression above PM |Q(.|q) is known and we need to compute PM then,

PM(m) =

∫

M
PM |Q(m|q)PQ(q)dq

=
a√
2πσ

∫

R
exp

(
−(m− q)2

2σ2

)
exp(−aq)1R+(q)dq

=
a√
2πσ

exp

(
−am+

a2σ2

2

)∫ +∞

0

exp

(
−(q − (m− aσ2))2

2σ2

)
dq

= a exp(−am) exp(
a2σ2

2
) erfc

(
aσ√

2
− m√

2σ

)
/2.
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Finally, when σ → 0 we have

PM(m) '





a exp(−am)(1 + o(σ2)) si m > 0,
a
2

exp(−am)(1 + o(σ)) si m = 0,
0 si m < 0.

In order to avoid heavy technical details that are hidden in o(σ2), we choose
to replace PM(m) by

P̃M(m) = a exp(−am)1R+(m).

By pluging the expression of P̃ above into the integrand of Equation (2.1) and
we obtain

2πaσ2PM |Q(m|q̂)PM |Q(m|q)
P̃(m)

= fq,q̂(m)

where

fq,q̂(m) = exp

(
−(m− q̂)2

2σ2
− (m− q)2

2σ2
+ am

)
1R∗+(m).

Consequently, we can write PQ̂|Q as

PQ̂|Q(q̂|q) '
σ→0

1

2πaσ2

∫

R
fq,q̂(m)PQ(q̂)dm. (2.2)

Using the equality

−(m− q̂)2

2σ2
− (m− q)2

2σ2
+ am =− 1

σ2

(
m− q + q̂ − aσ2

2

)2

+
1

4σ2
(q + q̂ + aσ2)2 − 1

2σ2
(q2 + q̂2),

we can finally compute the integral in Equation (2.2) and when σ → 0, we
obtain

PQ̂|Q(q̂|q) '
σ→0

=
1√

2π(
√

2σ)
exp

(
− 1

2(
√

2σ)2
(q̂ − q + aσ2)2

)
(1 + o(1)).

In order to illustrate this proof, we run a numerical simulation that approx-
imate PQ̂|Q(q̂|q). We use the following values a = 1.0, σ = 1.2 and q = 10 and

compare the results obtained with P̃ and PM . This shows that when σ is not
too large the approximation holds as the proposition indicates. In addition,
the numerical simulation highlights the fact that PM (cyan in Figure 2.3) does
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aσ2

Theoretical results:

 aσ2 = 1. 4400, 
√

(Q̂|Q) = 1. 6971 

Numerical results using M:

 aσ2 = 1. 4407, 
√

(Q̂|Q) = 1. 6969

Using ˜M:

 aσ2 = 1. 4390, 
√

(Q̂|Q) = 1. 6971

Q̂|Q

M|Q

M

˜
M

Figure 2.3: Numerical simulation of Proposition 13. The blue
curve is obtain using PM , however the numerical results displayed
for aσ2 and

√
V(q̂|q) indicates that the results for PQ̂|Q is very close

when computed using P̃M .

not need to be very close to the approximation we use in the proof P̃ (red in
Figure 2.3). This indicates that this step is probably not necessary but we do
not expand more on this.

By knowing an estimate of the posterior PQ̂|Q, we can estimate the psycho-
metric curve, see the following example.

Example 2. Let us define the set E as given in Example 1. Assume different
likelihoods respectively parametrized by (q1, σ1) ∈ R×R∗+ and (q2, σ2) ∈ R×R∗+
and different priors respectively parametrized by a1 > 0 and a2 > 0. We have

ϕE(q1, q2) = ψ

(
q1 − q2 − a1σ

2
1 + a2σ

2
2√

2(σ2
1 + σ2

2)

)

where ψ(t) = 1√
2π

∫ t
−∞ e

−s2/2ds is the cumulative normal function of sigmoid
shape. See Proposition 16 in the following chapter for a demonstration. An
example of psychometric curve is shown in Figure 2.4.
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q1

q2 + a1σ
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1 − a2σ
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slope:

√
2(σ2

1 + σ2
2)

+

Figure 2.4: An example of the psychometric curve given in Ex-
ample 2. It is shown as function of q1 while q2 is fixed.

3 Simplified Model: Deterministic Measures

and Estimation

In this section, we assume that the estimation q̂ is deterministic ie q̂ is in
fact computed from an estimation mapping Ψ : m 7→ Ψ(m) = q̂ ∈ Q and the
probability density is therefore PQ̂|M(|m) = δΨ(m). Such an asumption is the
most frequent in the literature, see for instance [184], most likely because it
leads to the simpler computations and numerical schemes. In the same way,
we assume that the measurement is computed from an image by a mapping
Φ : i 7→ Φ(i) = m ∈M and that the probability density is therefore PM |I(|i) =
δΦ(i). These assumptions do not rule out the Bayesian estimation hypothesis
as one can still use a Bayesian estimator to design Ψ(m). In the following, we
give few standard examples for the mapping Ψ and Φ.

3.1 Examples of Mapping

3.1.1 Measurement

In order to design the mapping Φ that computes the measurement m the
most natural way to proceed is to use the concept of neuron’s receptive field
(see Introduction, Section 2.3 or Section V1.1.3 for further details). The mea-
surement performed on an image i by a neural population of size n ∈ N is
typically modeled as a succession of a linear transform and a non-linear rec-
tification, for instance m = (max(〈ϕ1, i〉, 0), . . . ,max(〈ϕn, i〉, 0)) where 〈·, ·〉
denotes the Euclidean scalar product on I = RN2

for an image of size N ∈ N.
The linear impulse responses of neurons (ϕk)k∈{1,...,n} are typically wavelet-like
oriented multiscale filters. We refer to the book of Mallat [113] for mathe-
matical details about wavelet transform.
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3.1.2 Estimation

A class of estimation mapping is defined in variational form as

Ψ(m)
def.
= argmin

q̃∈Q

∫
L(q, q̃)PQ|M(q|m)dq.

where L is some loss function. In our framework PQ|M is not given but com-
puted by the Bayes rule

PQ|M(q|m) =
PM |Q(m|q)PQ(q)

PM(m)

where the normalization probability PM can be computed from PQ and PM |Q
alone through the integration

PM(m) =

∫

Q
PM |Q(m|q̃)PQ(q̃)dq̃.

Maximum A Posteriori For instance, choosing L(q, q̂) = 1− δq̂(q), where
δq̂ is the Dirac located at q̂, one obtains the Maximum A Posteriori (MAP)
estimator

ΨMAP(m) = argmax
q̂∈Q

PQ|M(q̂|m) = argmin
q̂∈Q

− logPM |Q(m|q̂)− logPQ(q̂). (3.1)

Mean Square Error Choosing L(q, q̂) = ||q − q̂||2 one obtains the Mean
Square Error (MSE) estimator (the conditional expectation)

ΨMSE(m)
def.
=

∫

Q
q̃ PQ|M(q̃|m)dq̃ =

∫
Q q̃ PM |Q(m|q̃)PQ(q̃)dq̃∫
Q PM |Q(m|q̃)PQ(q̃)dq̃

It is more intricate to compute than the MAP, mainly because of the integra-
tion, and of the normalizing constant, that itself depends on PQ.

3.2 Psychometric curve

As before, to ease of notations, we denote the estimation mapping on pairs
as

∀m = (m1,m2) ∈M×M, Ψ(m) = (Ψ(m1),Ψ(m2)) ∈ Q2.

The following proposition give a simplified expression for the psychometric
curve associated with an event E.
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Proposition 14. Assume that there exists mappings Ψ : m 7→ Ψ(m) = q̂ ∈ Q
and Φ : i 7→ Ψ(i) = m ∈M. Then,

ϕE(q) =

∫

I2

1E(Ψ ◦Φ(i))PI|Q(i|q)di

Proof.

∀ q ∈ Q2, ϕE(q) =

∫

Q2

∫

I2

1E(q̂)PQ̂|M (q̂|Φ(i))PI|Q(i|q)didq̂

=

∫

Q2

∫

I2

1E(q̂)δΨ◦Φ(i)(q̂)PI|Q(i|q)didq̂

=

∫

I2

1E(Ψ ◦Φ(i))PI|Q(i|q)di

where δΨ◦Φ(i)(q̂) = δΨ◦Φ(i1)(q̂1)δΨ◦Φ(i2)(q̂1).

Proposition 14 is useful as it expresses the psychometric curve as a function
of (Ψ,Φ,PI|Q). We have given some examples of mappings in the section
above. Moreover the generative model PI|Q can be for instance the Motion
Cloud model developed in Chapter I.

4 Inference Bayesian Inference Algorithms
After having detailing the structure of the psychophysical function ϕE un-

der several Bayesian model, we are now in the position to formally define an
inverse Bayesian inference procedure to estimate the prior from the output of
psychophysical experiments.

4.1 Prior fitting

Let us first put in statistical terms the outcome of n independent replica-
tions of 2AFC tests {(ε1, i1, q1), . . . , (εn, in, qn)} ∈ ({0, 1}×I2×Q2)n where for
all k ∈ {0, . . . , n}, ik is a pair of stimulations generated with density PI|Q(.|qk)
and εk is a Bernoulli random variable equals to 1 with some probability p if
qk ∈ E. Following Chapter 3, for each pair of stimulation ik, the brain mea-
sures mk = Φ(ik) from which it computes a pair of estimations q̂k = Ψ(mk).
For simplicity of the exposition, we assume that measures are directly the
image’s pixels ie Φ = Id. Moreover, we restrict our attention to a MAP esti-
mator, but similar derivations can be carried out in the general setting. Using
a MAP estimator leads to q̂k = ΨMAP (mk) = ΨMAP ◦Φ(ik) = ΨMAP (ik) which
can be written as

q̂k = argmin
q∈Q

− logPI|Q(ik|q)− logPQ(q).
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However, the output of an 2AFC experiment is not q̂k but only the Bernouilli
random variable εk. For the moment, we can only expect to simulate an
experiment ie generating two stimuli, estimating their parameters and decide
whether these estimates belong to E or not.

Example 3. As a typical example of instantiation of this formula, consider
MC stimulation (see Proposition 2). In this case, the stimuli are Gaussian and
have the power spectrum

∀ (ξ, τ) ∈ R2 × R, γ̂q(ξ, τ) =
PZ (||ξ||)
||ξ||2 PΘ (∠ξ)L(P||V−v0||)

(
−τ + 〈v0, ξ〉

||ξ||

)
,

where the linear transform L is such that

∀u ∈ R, L(f)(u)
def.
=

∫ π

−π
f(−u/ cos(ϕ))dϕ.

and q = (v0, σV , θ0, σΘ, z0, BZ) is the vector of the MC parameters. One can
therefore compute logPI|Q(ik|q).

4.2 Prior fitting when samples from q̂(m) is accessible.

Let us here rephrase in our language the approach detailed in [144]. It shed
some lights on the (convex!) class of constraints that a prior should typically,
so it is quite informative. Unfortunately, it cannot be used for psychophysical
studies because one never have direct access to the internal estimate hat q
made by the brain. The goal is to estimate the prior function g(q) from
psychophysical experiments. As remarked by [144], if one directly has access
to values q̂(m) for some set m ∈ M of stimulations, then finding g can be
obtained by solving a convex program, since g is only constrained to satisfy

{
g ; g > 0,

∫
g = 1, ∀ (m,w) ∈ M̃ ×Q, 〈g, hw,m〉 6 0

}

where hw,m = (L(·, q̂(m))− L(·, w))P(m|·).
An even simpler set-up is obtained when using the MAP estimator. In this

case, the first order optimality conditions of (3.1) reads

∇G(q̂(m)) = −∇F (q̂(m),m) (4.1)

where ∇ is the gradient with respect to the q̂ variables, and where we denoted
G(q̂) = log(g(q̂)) and F (q̂, m) = log(P(m|q̂)). Interestingly, the optimality
conditions (4.1) can be integrated which constitute an natural improvement
of [144] for the special case of a MAP estimator.



62 II. Bayesian Inference Models for Psychophysics

Proposition 15. Assume a series of stimulations/measures (mt)
1
t=0 between

m0 and m1, one has

G(q̂1) = G(q̂0)−
∫ 1

0

〈∇F (q̂t,mt), q̂
′
t〉dt

where q̂t = q̂(mt) and thus also q̂′t (time derivative of q̂t) is supposed to be
known.

4.3 Prior fitting when samples from ϕE are accessible.

We now detail the much more complicate (but realistic for psycophysics)
setting where one only has access to the output of a 2AFC experiment, so
when one has at its disposal an approximation ϕ̂E of the true psychophysical
function. In order to make the process computationally tractable, we assume
that the prior belongs to a parametric family P(q) = gα(q) parametrized by
some α. According to Proposition 12, the psychometric curve thus also depends
on α, which we denote as ϕE(q) = ϕE(q, α).

We denote εi ∈ {0, 1} for i ∈ I the output of the psychophysical experiment
for the ith trial, which is obtained by a stimulation with some parameters
qi ∈ Q. We set εi = 1 if he estimated for this trial that (q̂1, q̂2) ∈ E, and
εi = 0 otherwise. Then, according to our model, the εi are samples from
independent Bernoulli distributions of parameter ϕE(qi, α). The parameter α
can thus be estimated using a maximum likelihood estimate

min
α

∑

i∈I

`(εi, ϕE(qi, α)) (4.2)

where we denoted `(·, p) the anti-log likelihood of the Bernoulli variable of
parameter p

`(ε, p) =

{
− log(p) if ε = 0,
− log(1− p) if ε = 1.

Assuming for simplicity that for each tested q ∈ V = {qi}i∈I , the cardinal
of trials | {i ; qi = q} | is the same, the optimization (4.2) can be elegantly
rewritten as a Kullback-Leibler minimization

min
α

∑

q∈V

KL(ϕ̂E(q)|ϕE(q, α)) (4.3)

where KL(p̂|p) = p̂ log

(
p̂

p

)
+ (1− p̂) log

(
1− p̂
1− p

)
,
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where we denoted ϕ̂E(q) the empirical psychometric curve

ϕ̂E(q) =
| {i ∈ I ; εi = 1, qi = q} |
| {i ∈ I ; qi = q} | ∈ [0, 1].

The problem (4.3) is a non-convex, but typically smooth and low dimensional
optimization problem. We thus advocate the use of standard quasi-newton
technics (LBFGS) in order to capture a local optimal α.
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? III ?

Speed Discrimination in
Psychophysics

To exploit biologically-inspired parameterization of the MC model and pro-
vide a proof of concept of its usefulness based on motion perception, we con-
sider here the problem of discriminating the relative speed of moving dynam-
ical textures. The overall aim is to characterize the impact of both average
spatial frequency and average duration of temporal correlations on perceptual
speed estimation based on the empirical evidences. By simplifying the general
Bayesian framework developed in Chapter II, we assume a Gaussian likelihood
and we estimate a Laplacian prior to account for the bias observed in the
psychophsysical experiment. We focus here our attention on the use of a max-
imum a posteriori (MAP) estimator, which leads to a numerically tractable
fitting procedure.
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1 Introduction

1.1 Previous Works

Previous works of Brooks [27] and Smith [179] have revealed that spatial
frequency positively bias our speed perception. In the following, we reproduce
these experiments and embed into the Bayesian framework exposed in the pre-
vious chapter. In particular, our approach is mainly based on the works [184,
182, 96]. Stocker et al. [184] develop a Bayesian inverse methodology to infer
both parametric likelihood and prior that are able to explain the well known
negative effect of contrast on speed perception. By testing a large range of
speed, they are able to integrate the prior that appears to favor slow speed.
Their work has been reproduced by Sotiropoulos [182] that gives further prac-
tical details. More recently, Jogan and Stocker [96] successfully adapt this
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methodology to account for multiple spatial frequency channels. Finally, our
experiment is conducted using MCs developed in Chapter I and it is important
to highlight the work of Schrater et al. [171, 170] that use MC-like stimulation.
In [171], they use stimuli with decreasing spatial frequencies to study how hu-
mans estimate expansion rates from scale-changes information. In [170], they
use homogeneously oriented and heterogeneously oriented stimuli to probe the
mechanisms of energy summation over orientation during the estimation of
motion.

1.2 Contributions

We run psychophysical experiments to probe speed perception in humans
using zoom-like changes in MCs spatial frequency content. We simplify the
general Bayesian model developed in Chapter II by assuming a Gaussian like-
lihood and a Laplacian prior. As the MC model allows for the derivation of
a local motion-energy model, we use it to estimate speed in the experimental
stimuli. By comparing the estimated variances of observers’ likelihood to the
distribution of the motion-energy model estimates of speed we show that they
are not compatible. We validate the fitting process of the model using synthe-
sized data. The human data replicates previous findings [27, 179] that relative
perceived speed is positively biased by spatial frequency increments. The ef-
fect cannot be fully accounted for by previous models, but the current prior
acting on the spatio-temporal likelihoods has proved necessary in accounting
for the perceptual bias. We provide an online1 example of data synthesis and
analysis.

2 Experimental Settings and Model

2.1 Methods

The task is to discriminate the speed v ∈ R of a MC stimuli moving
with a horizontal central speed v = (v, 0). We refer to Section I2.3 for the
parameter notations. We assign as independent experimental variable the
most represented spatial frequency z0, that we denote in the following z for
easier reading. The other parameters are set to the following values

σV =
1

t?z
, θ0 =

π

2
, σΘ =

π

12
.

1http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

bayesian_observer/

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/bayesian_observer/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/bayesian_observer/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/bayesian_observer/
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Note that σV is thus dependent of the value of z to ensure that t? = 1
σV z

stays constant. This parameter t? controls the temporal frequency bandwidth,
as illustrated on the middle of Figure I2.2. We used a two alternative forced
choice (2AFC) paradigm (see Section II)2). In each trial, a gray fixation screen
with a small dark fixation spot was followed by two stimulus intervals of 250 ms
each, separated by an uniformly gray 250 ms inter-stimulus interval. The first
stimulus had parameters (v1, z1) and the second had parameters (v2, z2). At
the end of the trial, a gray screen appears asking the participant to report
which one of the two intervals was perceived as moving faster by pressing one
of two buttons, that is whether v1 > v2 or v2 > v1.

Given reference values (v?, z?), for each trial, (v1, z1) and (v2, z2) are se-
lected such that

{
vi = v?, zi ∈ z? + ∆Z

vj ∈ v? + ∆V , zj = z?
where ∆V = {−2,−1, 0, 1, 2},

where (i, j) = (1, 2) or (i, j) = (2, 1) (i.e. the ordering is randomized across
trials), and where z values are expressed in cycles per degree (c/◦) and v
values in ◦/s. The range ∆Z is defined below. Ten repetitions of each of the 25
possible combinations of these parameters are made per block of 250 trials and
at least four such blocks were collected per condition tested. The outcome of
these experiments are summarized by sampled psychometric curves ϕ̂v?,z? (see
Definition 3), where for all (v − v?, z − z?) ∈ ∆V ×∆Z , the value ϕ̂v?,z?(v, z)
is the empirical probability (each averaged over the typically 40 trials) that
a stimulus generated with parameters (v?, z) is moving faster than a stimulus
with parameters (v, z?).

To assess the validity of our model, we tested different scenarios summa-
rized in Table 2.1. Each row corresponds to 35 minutes of testing per partic-
ipant and was always performed by at least two of the participants. Stimuli
were generated on a Mac running OS 10.6.8 and displayed on a 20” Viewsonic
p227f monitor with resolution 1024 × 768 at 100 Hz. Routines were written
using Matlab 7.10.0 and Psychtoolbox 3.0.9 controlled the stimulus display.
Observers sat 57 cm from the screen in a dark room. Four observers, three
male and one female, with normal or corrected to normal vision took part in
these experiments. They gave their informed consent and the experiments re-
ceived ethical approval from the Aix-Marseille Ethics Committee in accordance
with the declaration of Helsinki.

To increase the statistical power of the data set during analysis, psycho-
metric functions were generated following the observed effect in the data and
a sampling was carried out to obtain a synthetic data set for the validation
of the Bayesian fitting procedure (see Chapter II4). The steps involved are
detailed in section 4.2.
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Case t? σZ BZ v? z? ∆Z

A1 200 ms 1.0 c/◦ × 5 ◦/s 0.8 c/◦ {−0.27,−0.16, 0, 0.27, 0.48}
A2 200 ms 1.0 c/◦ × 5 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}
A3 200 ms 1.0 c/◦ × 10 ◦/s 0.8 c/◦ {−0.27,−0.16, 0, 0.27, 0.48}
A4 200 ms 1.0 c/◦ × 10 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}
B1 100 ms 1.0 c/◦ × 10 ◦/s 0.8 c/◦ {−0.27,−0.16, 0, 0.27, 0.48}
B2 100 ms 1.0 c/◦ × 10 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}
C1 100 ms × 1.28 5 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}
C2 100 ms × 1.28 10 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}
C3 200 ms × 1.28 5 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}
C4 200 ms × 1.28 10 ◦/s 1.28 c/◦ {−0.48,−0.21, 0, 0.32, 0.85}

Table 2.1: A and B are both bandwidth controlled in ◦/s with
high and low t? respectively, C is bandwidth controlled in octaves.

2.2 Bayesian modeling

To make full use of our MC paradigm in analyzing the obtained results,
we follow the methodology of the Bayesian observer used for instance in [184,
182, 96] that we have formalized and refined in Chapter II. We assume the
observer makes its decision using a Maximum A Posteriori (MAP) estimator

v̂z(m) = argmin
v

[− log(PM |V,Z(m|v, z))− log(PV |Z(v|z))] (2.1)

computed from some internal representation m ∈ R of the observed stimulus
(see Section II3.1). For simplicity, we assume that the observer estimates z
from m without bias. To simplify the numerical analysis, we assume that the
likelihood is Gaussian, with a variance independent of v. Furthermore, we
assume that the prior is Laplacian as this gives a good description of the a
priori statistics of speeds in natural images [43]:

PM |V,Z(m|v, z) =
1√

2πσz
e
− |m−v|

2

2σ2
z and PV |Z(v|z) ∝ eazv1[0,vmax](v). (2.2)

where vmax > 0 is a cutoff speed ensuring that PV |Z is a well defined density
even if az > 0.

Both az and σz are unknown parameters of the model, and are obtained from
the outcome of the experiments by a fitting process we now explain.

3 Experimental Likelihood vs. the MC Model
The approach we propose in this chapter is to use the model (2.2), which

thus corresponds to directly fitting the likelihood PM |V,Z(m|v, z) from the ex-
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m
vv + azσ

2
z

bias

PM |V,Z(m|v, z): likelihood

PV |Z(m|z): prior probability
Posterior probability

Figure 2.1: Multiplying the likelihood by such a prior gives a
posterior that looks like a shifted version of the likelihood. Such an
idea shows that the prior is responsible for bias when a Bayesian
inference is performed.

perimental psychometric curve. While this makes sense from a data-analysis
point of view, this required strong modeling hypothesis, in particular, that the
likelihood is Gaussian with a variance σ2

z independent of the parameter v to
be estimated by the observer.

Before actually analyzing the output of the experiments in Section 4 and 5,
we first propose in this section to derive a likelihood model directly from the
stimuli. We assume the hypothesis that the observer uses a standard motion
estimation process, based on the motion energy concept [3], an idea we incor-
porate here into the MC distribution. In this setting, this corresponds to using
a MLE estimator, and making use of the sPDE formulation of MC.

3.1 MLE Speed Estimator.

We first show how to compute this MLE estimator. To be able to achieve
this, we use the sPDE formulation provided by Proposition 5. Equation (3.4)
is useful from a Bayesian modeling perspective, because, informally, it can be
interpreted as the fact that the Gaussian distribution of MC has the following
appealing form, for any video I : Ω×T → R observed on a bounded space-time
domain Ω× [0, T ],

− log(PI(I|v0)) = ZI +

∫

Ω

∫ T

0

|D(KW ? I)(x, t)

+ 〈G(KW ? I)(x, t), v0〉+ 〈H(KW ? I)(x, t)v0, v0〉|2dtdx
(3.1)

where KW is the spatial filter corresponding to the square-root inverse of the
covariance ΣW , i.e. which satisfies K̂W (ξ)

def.
= σ̂W (ξ)−1, where D is defined

in (3.2), G and H are defined in (3.5), where ZI is a normalization constant
which is independent of v0 where σ̂W is defined in (3.7). Equation (3.1) can
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be seen as a direct generalization of the initial energy model (2.3), when the
first order luminance conservation sPDE (2.2) is replaced by the second order
MC sPDE model (3.4).

It is however important to realize that the expression (3.1) is only formal,
since the rigorous definition of the likelihood of infinite dimensional Gaussian
distribution is more involved [70]. It is possible to give a simple rigorous ex-
pression for the case of discretized clouds satisfying the AR(2) recursion (3.11).
In this case, for some input video I = (I(`))L`=1, the log-likelihood reads

− log(PI(I)) = Z̃I +Kv0(I) where

Kv0(I)
def.
=

1

∆4

L∑

`=1

∫

Ω

|KW ?I(`+1)(x)−Uv0?KW ?I(`)(x)−Vv0?KW ?I(`−1)(x)|2dx

where Uv0 and Vv0 are defined in (3.12). This convenient formulation can be
used to re-write the MLE estimator of the horizontal speed v parameter of a
MC as

v̂MLE(I)
def.
= argmax

v
PI(I) = argmin

v
Kv0(I) where v0 = (v, 0) ∈ R2 (3.2)

where we used the fact that Z̃I is independent of v0. The solution to this
optimization problem with respect to v is then computed using the Newton-
CG optimization method implemented in the python library scipy.

3.2 MLE Modeling of the Likelihood.

Following several previous works such as [184, 182], we assumed the exis-
tence of an internal representation parameter m, which was assumed to be a
scalar, with a Gaussian distribution conditioned on (v, z). We explore here the
possibility that this internal representation could be directly obtained from the
stimuli by the observer using an “optimal” speed detector (an MLE estimate).

Denoting Iv,z a MC, which is a random Gaussian field of power spec-
trum (2.5), with central speeds v0 = (v, 0) and central spatial frequency z
(the other parameters being fixed as explained in the experimental section of
the paper), this means that we consider the internal representation as being
the following scalar random variable

Mv,z
def.
= v̂MLE

z (Iv,z) where v̂MLE
z (I)

def.
= argmax

v
PM |V,Z(I|v, z), (3.3)

which corresponds to the optimization (3.2) and can be solved efficiently nu-
merically.
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As shown in Figure 3.1(a), we observed that Mv,z is well approximated by a
Gaussian random variable. Its mean is very close to v, and Figure 3.1(b) shows
the evolution of its variance for different spatial frequencies z. An important
point to note here is that this optimal estimation model (using an MLE) is
not consistent with the experimental finding because the estimated standard
deviations of observers do not show a decreasing behavior as in Figure 3.1(b).
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Figure 3.1: Estimates of Mv,z for z = 0.8 c/◦ defined by (3.3) and
its standard deviation as a function of z.

4 Model Fitting Evaluation

4.1 Likelihood and Prior Estimation

Adopting an approach from previous literature [184, 182, 96] and developed
in Section II2, the theoretical psychometric curve obtained by a Bayesian de-
cision model is

ϕv?,z?(v, z)
def.
= E(v̂z?(Mv,z?) > v̂z(Mv?,z))

whereMv,z ∼ N (v, σ2
z) is a Gaussian variable having the distribution PM |V,Z(·|v, z).

The definition corresponds to the one introduced in Definition 3, however we
adapt the notations to the experimental context.

The following proposition shows that in our special case of Gaussian prior
and Laplacian likelihood, it can be computed in closed form. Its proof follows
closely the derivation of [182, Appendix A]. This proposition must be related
to Proposition 13. The difference is that here we assume a MAP estimator
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v
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Figure 4.1: The shape of the psychometric function follows the
estimation of the two speeds by Bayesian inference 2.1. This fig-
ure illustrates Proposition 16. The bias ensues from the difference
between the bias on the two estimated speeds.

whereas in Proposition 13 the posterior is obtained by integration. Impor-
tantly, in both cases the bias is the same while the standard deviation of the
posterior is not scaled by

√
2 in the following Proposition.

Proposition 16. In the special case of the estimator (2.1) with a parameter-
ization (2.2), one has

ϕv?,z?(v, z) = ψ

(
v − v? − az?σ2

z? + azσ
2
z√

σ2
z? + σ2

z

)
(4.1)

where ψ(t) = 1√
2π

∫ t
−∞ e

−s2/2ds is the cumulative normal function of sigmoid
shape.

Proof. One has the closed form expression for the MAP estimator

v̂z(m) = m− azσ2
z ,

and hence, denotingN (µ, σ2) the Gaussian distribution of mean µ and variance
σ2,

v̂z(Mv,z) ∼ N (v − azσ2
z , σ

2
z)

where ∼ means equality of distributions. One thus has

v̂z?(Mv,z?)− v̂z(Mv?,z) ∼ N (v − v? − az?σ2
z? + azσ

2
z , σ

2
z? + σ2

z),

which leads to the results by taking expectation.
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Fitting procedure In order to fit this model to our data we use a two-
step method each consisting in minimizing the Kullback-Leibler divergence
between the model and its samples (see Section II4.3). Numerically, the Nelder-
Mead simplex method implemented in the python library scipy has been used.
Before going further let us introduce

ϕa,σv?,z?(v, z) = ψ

(
v − v? − az?σ2

z? + azσ
2
z√

σ2
z? + σ2

z

)
,

ϕµ,Σv?,z?(v, z) = ψ

(
v − v? + µz?,z

Σz?,z

)

and KL(p̂|p) = p̂ log

(
p̂

p

)
+ (1− p̂) log

(
1− p̂
1− p

)

where µz?,z = azσ
2
z − az?σ2

z? , Σ2
z?,z = σ2

z? + σ2
z and KL is the Kullback-Leibler

divergence between samples p̂ and model p.

• Step 1: for all z, z?, initialize at a random point, compute

(µ̂, Σ̂) = argmin
µ,Σ

∑

v

KL(ϕ̂v?,z?|ϕµ,Σv?,z?)

• Step 2: solve the linear relation shown above between (µ̂, Σ̂) and (â, σ̂)

• Step 3: initialize at (â, σ̂), compute

(ˆ̂a, ˆ̂σ) = argmin
a,σ

∑

z,z?

∑

v

KL(ϕ̂v?,z?|ϕa,σv?,z?)

Remark 3. This method is coupled with a repeated stochastic initialization
for the first step in order to overcome the number of local minima encountered
during the fitting process. The approach was found to exhibit better results
than a direct and global fit (third point). The potential problem of KL fits pro-
ducing misleading results after convergence to local minima made it necessary
to extend the empirical data by generating synthetic analogous data from the
psychometric fits. Through this process detailed in Section 4.2 a more robust
test of the validity of the analysis can be carried out.

Remark 4. Note that in practice we perform a fit in a log-speed domain ie we
consider ϕṽ?,z?(ṽ, z) where ṽ = ln(1 + v/v0) with v0 = 0.3◦/s following [184].
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4.2 Results on Synthetic Data

To avoid the dangerous aspect of undefined local minima convergence dur-
ing KL fitting to empirical data, the quality of fitting can be assessed more
objectively on derived synthetic data. The parameters az and σz were cho-
sen so that they reproduce the increasing behavior of µz?,z = azσ

2
z − az?σ2

z? .
Then, the values of the psychometric functions ϕa,σv?,z?(v, z) at the experimental
points (v1, z1) and (v2, z2) described in Section 2.1 and rows (A1) and (A2) of
Table 2.1 were used as the parameters of a binomial distribution from which we
can generate any number nb of blocks of 10 repetitions. The ten corresponding
psychometric curves are shown in Figure 4.2 along with their fitted version.
Following the fitting procedure described above in 4.1, we show in Figures 4.3
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Figure 4.2: On the left the psychometric curves that simulate case
A1, on the right the psychometric curves that simulate A2. Sim-
ulated psychometric curves resulting from the synthetic data are
represented by the plain lines and the empirically fitted psychome-
tric curves are represented by the dotted lines.

and 4.4 our results for (â, σ̂) and (ˆ̂a, ˆ̂σ). The quality of fitting naturally in-
creases with the number of blocks, this effect is most striking for the likelihood
width. The fitted log-prior slope shows a significant offset that is due to the
under determination of the linear relations between (µ̂, Σ̂) and (â, σ̂). Indeed
solutions of the associated linear system lies in one dimensional affine space.
However, even though the true values of az remain intractable the decreasing
behavior of a is well captured within the trends generated by the synthetic
data sets and by implication the same trends are valid in the empirical data.
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Figure 4.3: On the left the likelihood width σ̂ obtained after
the first optimization step 4.1, on the right the likelihood width ˆ̂σ
obtained after the third optimization step 4.1. These estimations
are represented for different numbers of block with one standard
deviation error. The black line represents the ground truth values
of the likelihood widths used to generate the synthetic data.
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Figure 4.4: On the left the prior slope â obtained after the first
optimization step 4.1, on the right the prior slope ˆ̂a obtained after
the third optimization step 4.1. These estimations are represented
for different numbers of block with one standard deviation error.
The black line represents the ground truth values of the prior slopes
used to generate the synthetic data.

5 Experimental Data and Discussion

5.1 Results on Experimental Data

Estimating speed in dynamic visual scenes is undoubtedly a crucial skill for
the successful interaction of any animal with its environment. Human judge-
ments of perceived speed have therefore generated much interest, and been
studied with a range psychophysics paradigms. The different results obtained
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in these studies suggest that rather than computing a veridical estimate, the
visual system generates speed judgements influenced by contrast [189], speed
range [190], luminance [79], spatial frequency [27, 178, 180] and retinal ec-
centricity [80]. There are currently no theoretical models of the underlying
mechanisms serving speed estimation which capture this dependence on such
a broad range of image characteristics. One of the reasons might be that the
simplified grating stimuli used in most of the previous studies do not shed light
on the possible elaborations in neural processing that arise when more com-
plex stimulation. Such elaborations, such as nonlinearities in spatio-temporal
frequency space can be seen in their simplest form even with a superposition
of a pair gratings [152]. In the current work, we used our formulation of mo-
tion cloud stimuli which allowed the separate parametric manipulation of peak
spatial frequency (z), spatial frequency bandwidth (Bz, σz) and stimulus life-
time (t?) which is inversely related to the temporal variability. The stimuli are
all broadband, closer resembling visual inputs under natural stimulation. In
the plotted data, we avoid cluttering by restricting traces to a subset of data,
S1/S2, from the pair of participants who completed the full set of parametric
conditions. Our approach was to test fewer participants (4) but under several
parametric conditions using a large number trials analyzed alongside the syn-
thetic data. The data that is not plotted here shows trends that lie within the
range of patterns seen from S1/S2.

Before going into the details of analysis let us introduce convenient abbre-
viations.

• NTF/BTF: Narrow/Broad band Temporal Frequency;

• LSF/HSF: Low/High Spatial Frequency.

Cycle-controlled bandwidth conditions The main manipulation in each
case was the direct comparison of the speed of a range of five stimuli in which
the central spatial frequency was varied between five values, but all other
parameters were equated under the different conditions. In a first manipulation
in which bandwidth was controlled by fixing it at a value of 1 c/◦ for all
stimuli (conditions A* and B* in Table 2.1), we found that lower frequencies
were consistently perceived to be moving slower than higher frequencies (see
Figure 5.1). The bias was generally smaller at 5 ◦/s than at 10 ◦/s (compare
first column on the left with remaining two columns). This trend was the same
for both the lower and the higher spatial frequency ranges used in the tasks
(see Table 2.1 for details) when we compare the top row, Figure 5.1(a) with
the bottom row, Figure 5.1(b). This means the effect generalizes across the
two scales used. The temporal variability of the stimulus manipulated via t?
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was found to increase the variability of the bias estimates, though this did not
significantly increase the biases (compare the shaded errors in the pair of plots
in both the second and the third columns of Figure 5.1).
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Figure 5.1: Relative perceived speeds from the Point of Subjective
Equality (PSE). (a) From left to right A1, A3, B1. (b) From left
to right A2, A4, B2. Task generates psychometric functions which
show shifts in the point of subjective equality for the range of test z.
Stimuli of lower frequency with respect to the reference (intersection
of dotted horizontal and vertical lines gives the reference stimulus)
are perceived as going slower, those with greater mean frequency are
perceived as going relatively faster. This effect is observed under all
conditions but is stronger for subject 1. Error bars are computed
from those obtained for (âz, σ̂z) which explains their amplitude. In
case of a direct fitting of µz,z? they are significantly smaller (not
shown).

Octave-controlled bandwidth conditions The octave-bandwidth con-
trolled stimuli of conditions C* (see Table 2.1), allowed us to vary the spatial
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frequency manipulations (z) in a way that generated scale invariant band-
widths exactly as would be expected from zooming movements towards or
away from scene objects (see Figure 2.1). Thus if trends seen in Figure 5.1
were the result of ecologically invalid fixing of bandwidths at 1 c/◦ in the
manipulations, this would be corrected in the current manipulation. Only the
higher frequency comparison range was used. We found that the trend was the
same as that seen in Figure 5.1, indeed higher spatial frequencies were consis-
tently perceived as faster than lower ones, shown in Figure 5.2. Interestingly,
for the bandwidth controlled stimuli, the biases do not change across speed
conditions (compare left column with right hand side columns of Figure 5.2).
A small systematic change in the bias is seen with the manipulation of t?,
reducing temporal variability going from the upper to the lower row reduces
the measured biases. The bias at the highest frequency averaged for S1/S2 is
equal to 0.13 for t? = 100 ms (BTF) and equal to 0.08 for t? = 200 ms (NTF).
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Figure 5.2: Relative perceived speeds from the Point of Subjective
Equality (PSE). Top: C1, C2. Bottom: C3, C4. Same comment
as Figure 5.1. The effect does not appear for subject 2 in case C2
and C3. Error bars are computed from those obtained for (âz, σ̂z)
which explains their amplitude. In case of a direct fitting of µz,z?
they are significantly smaller (not shown).
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Measured biases and corresponding sensory likelihoods and priors
We used the Bayesian formulation detailed in Section 4.1 to estimate the like-
lihood widths and the corresponding prior slopes under the tested experimental
conditions. There is no systematic trend within the likelihoods in the cycle-
bandwidth controlled condition fits in Figure 5.3(a) and there is also individ-
ual variability in the trends. We conclude that the sensory variability of the
speed estimates obtained from the Bayesian modeling cannot explain the spa-
tial frequency driven bias in perceived speed that is measured. The log prior
slopes show a systematic reduction as spatial frequency is increased, see in Fig-
ure 5.3(b). Under all conditions, the data is best explained by a decreasing log
prior as spatial frequencies are increasing. Under the octave-bandwidth con-
trolled stimulus condition, the trends in changes in the best fitted likelihoods
as the spatial frequency is increased are again not systematic (Figure 5.4(a)).
The log prior slopes do however show a small systematic reduction as spatial
frequencies are increased, in Figure 5.4(b). The slopes are less steep than
under the cycle-bandwidth manipulations (linear regression gives an average
of −2.08 for the log-prior slopes in Figure 5.3(b) and −1.31 for the log-prior
slopes in Figure 5.4(b)). Under both bandwidth configurations, we conclude
that the prior slope explains at least part of the systematic effect of spatial
frequency on perceived speed.

5.2 Insights into Human Speed Perception

We exploited the principled and ecologically motivated parameterization of
MC to study biases in human speed judgements under a range of parametric
conditions. Primarily, we considered the effect of scene scaling on perceived
speed, manipulated via central spatial frequencies in a similar way to previ-
ous experiments which had shown spatial frequency induced perceived speed
biases [27, 179]. In general, our experimental result confirmed that higher
spatial frequencies were consistently perceived to be moving faster than com-
pared lower frequencies; the same result reported in a previous study using
both simple gratings and compounds of paired gratings, the second of which
can be considered as a relatively broadband bandwidth stimulus [27]. In that
work, they noted that biases were present, but slightly reduced in the com-
pound (broadband) stimuli. That conclusion was consistent with a more recent
psychophysics manipulation in which up to four distinct composite gratings
were used in relative speed judgements. Estimates were found to be more
veridical as bandwidth increased by adding additional components from the
set of four, but increasing spatial frequencies generally biased towards faster
perceived speed even if individual participants showed different trends [96].
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Figure 5.3: Likelihood widths and log-prior slopes. (a) Likelihood
widths for A1-A2, A3-A4 and B1-B2. Likelihood widths do not
show any common behavior, different behavior are observed for
subject 1 whereas it is almost constant for subject 2. (b) Log prior
slopes for A1-A2, A3-A4 and B1-B2. Despite the amplitude of error
bars the log prior slopes have a common decreasing behavior in all
subjects and in all cases.

Indeed, findings from primate neurophysiology studies have also noted that
while responses are biased by spatial frequency, the tendency towards true
speed sensitivity (measured as the proportion of individual neurons showing
speed sensitivity) increases when broadband stimulation is used [152, 147].

It is increasingly being recognized that linear systems approaches to in-
terrogating visual processing with single sinusoidal luminance grating inputs
represents a powerful, but limited, approach to studying speed perception as
they fail to capture the fact that naturalistic broadband frequency distribu-
tions may support speed estimation [27, 124, 125]. A linear consideration for
example would not account for the fact that estimation in the presence or
multiple sinusoidal components results in non-linear optimal combination [96].
The current work sought to extend the body of previous work by looking at
spatial frequency induced biases using a parametric configuration in the form
of the motion clouds which allowed a manipulation across a continuous scale
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Figure 5.4: Likelihood widths and log-prior slopes. (a) Likelihood
widths. Top: C1, C2. Bottom: C3, C4. Same as Figure 5.3(a).
(b)Log prior slopes. Top: C1, C2. Bottom: C3, C4. Same as
Figure 5.3(b) except for subject 2 in case C3.

of frequency and bandwidth parameters. The effect of frequency interactions
across the broadband stimulus defined along the two dimensional orthogonal
spatio-temporal luminance plane to allowed us to measure the perceptual effect
of the projection of different areas (e.g. see Figure 2.2) onto the same speed
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line. The measurement should rely on proposed inhibitory interactions which
occur during spatio-temporal frequency integration for speed perception [178]
which cannot be seen with component stimuli separated by octaves [96].

We used a faster and slower speed because previous work using sinusoidal
grating stimuli had shown that below the slower range (< 8 ◦/s ), uncertainty
manipulated through lower contrasts caused an under estimation of speeds
while at faster speeds (> 16 ◦/s) it caused an overestimation [190, 79]. Our
findings show that under the cycle-controlled bandwidth conditions, biases
were larger at the faster speed than the slower ones while under the octave
controlled bandwidths, the biases were almost identical for both speeds. The
projections made from the frequency plane onto the speed line at these two
speeds, once corrected with a scale invariance assumption, was therefore the
same at these two speeds which typically show differences in contrast manipu-
lations. Indeed the Bayesian fitting did not identify a systematic shift of either
likelihood or prior slope parameters that could explain the biases observed par-
ticularly for the bandwidth controlled condition. While the current work does
not resolve the ongoing gaps in our understanding of speed perception mech-
anisms particularly as it did not tackle contrast related biases, it showed that
known frequency biases in speed perception also arise from orthogonal spa-
tial and temporal uncertainties when RMS contrast is controlled. Bayesian
models such as the one we applied, which effectively project distributions in
the spatiotemporal plane onto a given speed line in which a linear low speed
prior applies [184] may be insufficient to capture the actual spatiotemporal
priors. Indeed the Bayesian models which successfully predict speed percep-
tion with more complex or composite stimuli often require various elaborations
away from simplistic low speed priors [96, 182]. Indeed even imaging studies
considering the underlying mechanisms fail to find definitive evidence for the
encoding of a slow speed prior [202].

5.3 Conclusions

We used the MC stimuli in a psychophysical task and showed that these
textures allow one to further understand the processes underlying speed esti-
mation. We used broadband stimulation to study frequency induced biases in
visual perception, using various stimulus configuration including octave band-
width and RMS contrast controlled manipulations which allowed us to manip-
ulate central frequencies as scale invariant stimulus zooms. We showed that
measured biases under these controlled conditions were the same at both a
faster and a slower tested speed. By linking the stimulation directly to the
standard Bayesian formalism, we demonstrated that the sensory representa-
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tion of the stimulus (the likelihoods) in such models can be described directly
from the generative MC model. The widely accepted Bayesian model which
assumes a slow speed prior showed that the frequency interactions could not
be fully captured by the current formulation. We conclude that an extension
to that formulation is needed and perhaps a two dimensional prior acting on
the frequency space and mediated by underlying neural sensitivity has a role to
play in computational modeling of complex spatiotemporal integration behind
speed perception. We propose that more experiments with naturalistic stimuli
such as MCs and a consideration of more generally applicable priors will be
needed in future.
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A Review of Supervised
Classification Techniques

This Chapter presents techniques from supervised machine learning clas-
sification to further analyze two types of brain recordings in Chapters V and
VI. First, we introduce classification as a statistical inference problem and
describe three different approaches: a deterministic approach, and two prob-
abilistic approaches. The difference between the probabilistic approaches lies
in the fact that one of them uses a discriminative probability model while
the other uses a generative model combined with Bayes formula. We then
details four different algorithm based on the generative approach – Quadratic
Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Gaussian
Naive Bayes (GNB), Nearest Centroid (NC) – and one based on the discrimi-
native approach – Logistic Classification (LC). We use these approaches in the
following chapters. Finally, we define useful tools for the analysis conducted
in the following chapters, as well as an original error classification measure.
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1 Introduction

1.1 Generalities on Classification

In statistics and machine learning, supervised learning tackles the problem
of modeling the relationship between features x in X to labels y in Y . To put
it briefly, it aims at inferring a function that maps any feature x to its label
y based on the knowledge of (xi, yi)i∈I . In absence of any assumption over
the set Y , the problem is known as supervised regression or simply regression.
When we assume that Y is finite the problem becomes a classification issue,
also known as supervised classification. Contrary to unsupervised classification
(also called clustering) the class of features is known a priori. There is a great
diversity of approaches and algorithms that are explored both theoretically and
practically; we refer to the following handbooks for detailed descriptions [198,
199, 197, 93, 81]. There are approaches that search for empirical rules based
on the data to build a decision tree [166]. Others aim at separating the data
by a frontier; this is the principle of Support Vector Machine (SVM). Finally,
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some methods rely on simple estimations of statistics of each class like Nearest
Centroid (NC) or k-Nearest Neighbors (kNN), when others are built on a
parametric probabilistic model like Logistic Classification (LC) or Quadratic
and Linear Discriminant Analysis (QDA/LDA). The performances of these
methods might vary significantly and depend largely on the type of data and
the evaluation criteria that are used. We refer to [30, 29, 107] and the references
therein for an exemple of empirical evaluations. As a statistical tool, supervised
learning is used in a variety of fields like social sciences [123], geology [138],
finance [186], medicine [62], biology [85], etc..

1.2 Contributions

From a mathematical point of view this Chapter provides very few contri-
butions. We give some useful and sometimes original examples to the different
supervised learning approaches. At the end, we give precise definitions of the
different tools we use in the following chapters. In particular, we define a
notion of distance between labels (yi)i∈I and predicted labels (ŷi)i∈I based on
optimal transport that takes into account the structure (when it exists) of
labels. In summary, this Chapter is closer to a graduate course in machine
learning than to a contribution to research. However, as an interdisciplinary
work, this manuscript is not only addressed to mathematician and we find
it necessary to set up the general problem of supervised classification and to
introduce the different algorithms as particular cases of a common framework
before we apply them in Chapters V and VI. The goal is to introduce these
tools to experimental neuroscientists and psychophysicists so they can imag-
ine relevant data analysis based on supervised learning. We provide the source
code1 of Examples 6 and 7 that illustrate Section 2.

2 Classification as a Statistical Inference

Problem
For simplicity purposes in this section, we assume that X is a subset of

Rn and Y is a finite subset of N. We denote (xi, yi)i∈I ⊂ X × Y the features
extracted from the data and their associated labels. One can use the observed
data as features but it is often necessary to process the raw data to remove
at least outliers and obvious recorder noise. We detail the PCA feature selec-
tion technique in Section 5. In the following subsections, we introduce three
approaches that tackle the problem of classification; the first is deterministic,

1http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

examples_classif/

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/examples_classif/
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the two others are probabilistic and based on either a discriminating model or
a generative model.

2.1 Deterministic Approach

The goal is to find a deterministic function f : X → Y that maps any
features (xi)i∈I to their label (yi)i∈I as well as possible in order to be able
to predict the class y = f(x) for any unknown observation x ∈ X . Such a
mapping f can be determined by minimizing a loss function V : Y × Y → R
that penalizes the distance between the two labels

f̂ = argmin
f

∑

i∈I

V (yi, f(xi)). (2.1)

In such a form, this problem is ill-posed and unstable due to potential noise
in the data. For that reason, it is common to assume that functions f lie in a
parametric space FP = {fθ|θ ∈ P} where P is a space of parameters. Under
such a hypothesis we obtain

θ̂ = argmin
θ∈P

∑

i∈I

V (yi, fθ(xi)). (2.2)

Example 4. In the binary classification case Y = {−1, 1}, the desired mapping
can be chosen as a linear function even if it does not take its value in Y. In
this case the parameters is θ = w and it lies in P = X , therefore we have
fw(x) = 〈w, x〉. By taking the loss to be the squared difference V (y, fw(x)) =
(y− fw(x))2, the problem comes down to a linear regression and it is therefore
simple to estimate ŵ. Finally, we can make predictions using sign(fŵ) as the
line defined by 〈ŵ, x〉 = 0 aims at separating the two classes, see Figure 2.1.

2.2 Discriminative Approach

The discriminative approach relies on a conditional probabilistic model for
a feature to belong to a particular class. We denote the associated density
PY |X . Therefore, the function mapping f emerges in a maximum likelihood
framework, for all x ∈ X ,

f(x) = argmax
y∈Y

PY |X(y|x). (2.3)

Although the function mapping – being defined as a maximum over a finite set
– is easy to compute, the difficulty lies in designing the probabilistic model.
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Figure 2.1: Two illustrations of the method introduced in Ex-
ample 4. The gray levels are the values of the linear function
x 7→ 〈w, x〉 and the black line represents its zeros set. Left: the
two classes are linearly separable. Right: the two classes are not
linearly separable.

Again, it is appropriate to assume that the desired densities are parametrized{
PY |X,θ|θ ∈ P

}
and that the data (xi, yi)i∈I are i.i.d.. Hence, the problem

becomes tractable and the parameter θ̂ that best represents the density that
generates the data can be estimated using a Maximum Likelihood Estimation
(MLE).

Definition 4. Assume that observations (xi, yi)i∈I are i.i.d. and have the
conditional density PY |X,θ. Their associated likelihood is

L(θ)
def.
=
∏

i∈I

PY |X,θ(yi|xi). (2.4)

Denoting Ṽ (y, x, θ) = − log
(
PY |X,θ(y|x)

)
, the negative log-likelihood is

`(θ)
def.
=
∑

i∈I

Ṽ (yi, xi, θ). (2.5)

Given these definitions, the maximum of the likelihood or equivalently the
minimum of the negative log-likelihood are written

θ̂ = argmax
θ∈P

L(θ) = argmin
θ∈P

`(θ). (2.6)

In the form of a minimum, the optimization is consistent with Equation (2.2).
As a consequence, Ṽ can be interpreted as a modified loss function. In partic-
ular when there exists a loss function V , a parameter θ, a function fθ and two
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constants (c1, c2) such that

Ṽ (y, x, θ) = c1V (y, fθ(x)) + c2 (2.7)

the deterministic approach and the discriminative approaches are equivalent,
see Example 5. However, these are strong hypotheses that are generally not
verified, see Example 6 below.

Example 5. In the binary classification case, although this does not respect
the binary assumption, we can assume that the label y is the realization of a
Gaussian random variable with unknown mean 〈w, x〉 and known variance σ2.
The parameter θ = w lies in the space P = X . In short, the density is written

PY |X,w(y|x) =
1√
2πσ

exp

(
−(y − 〈w, x〉)2

2σ2

)

which yields to the following loss

Ṽ (y, x, w) = log(
√

2πσ) +
1

2σ2
(y − 〈w, x〉)2.

Thus, Ṽ (y, x, w) = c1V (y, fθ(x)) + c2 with V (y, y′) = (y − y′)2, θ = w, fθ =
〈θ, w〉, c1 = 1/(2σ2) and c2 = log(

√
2πσ). This probabilistic approach is

therefore equivalent to Example 4.

Example 6. Again, consider a binary classification problem. We assume a
paremetrization θ = (w−1, w1) = (−w,w) ∈ P = X 2 and that the discrimina-
tive probability is given by

PY |X,θ(y|x) =
1

π
arctan (〈wy, x〉) +

1

2
.

This assumption is more realistic for a binary variable than in Example 5 since
it is discrete. In this case the loss is

Ṽ (y, x, w) = − log

(
1

π
arctan (〈wy, x〉) +

1

2

)

which cannot be set in the form of Equation (2.7). However the line 〈w1, x〉 = 0
can still be used to separate the two classes, see Figure 2.2.
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Figure 2.2: Two illustrations of the method introduced in Ex-
ample 6. The gray levels are the values of the probability density
function x 7→ PY |X,θ(1|x) and the black line represents the set where
this probability is equal to 0.5. Left: the two classes are linearly
separable. Right: the two classes are not linearly separable.

2.3 Generative Approach

Instead of searching for a conditional probability PY |X , we can apply Bayes
Theorem introduced in Chapter III. For all (x, y) ∈ X × Y ,

PY |X(y|x) =
PX|Y (x|y)PY (y)

PX(x)
(2.8)

Such a Bayesian approach provides a different expression for the decision
rule (2.3),

f(x) = argmax
y∈Y

PX|Y (x|y)PY (y). (2.9)

Therefore the probabilistic model we are searching for is now twofold: on the
one hand a generative model of the data knowing their class, on the other
hand the occurrence probability of classes. Contrary to the direct design of
a discriminant model PY |X , the Bayesian Theorem allows to introduce some
knowledge about the data conditioned by their class in PX|Y and it takes into
account the differences in proportion of each class in the discrete probabil-
ity PY . For the sake of simplicity, it is also convenient to assume that the
generative probabilities lie in a parametric space

{
PX|Y,θ1 |θ1 ∈ P1

}
. Such an

assumption is implicit for discrete probabilities and we write {PY,θ2|θ2 ∈ P2}
its parametric space. Thereby, denoting θ = (θ1, θ2) ∈ P = P1 × P2, we can
use the negative log-likelihood to estimate the parameter θ. Moreover, using
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the fact that following Equation (2.8)

Ṽ (y, x, θ) = − log
(
PX|Y,θ1(x|y)

)
− log (PY,θ2(y)) + log (PX(x)) , (2.10)

the minimization of the negative log-likelihood comes down to

θ̂ = argmin
θ=(θ1,θ2)∈P

−
∑

i∈I

log
(
PX|Y,θ1(xi|yi)

)
− log (PY,θ2(yi)) . (2.11)

Example 7. Once more, let us assume a binary classification problem. We
use the parametrization θ1 = (µ−1, µ1, σ−1, σ1) ∈ P1 = R2 × R?2 and consider
the following generative probability

PX|Y,θ1(x|y) =

{
σ2
y

2πZ
exp

(
− 1

1−||σyx−µy ||2

)
if ||σyx− µy|| 6 1,

0 otherwise,

where Z =
∫ 1

0
s exp

(
− 1

1−s2
)

ds is a normalizing constant. In the case where
each class has the same probability (ie that ∀y ∈ Y ,PY = 1/2) the minimiza-
tion of the negative log-likelihood writes as follows

θ̂ = argmin
θ1∈P1

∑

i∈I

1

1− ||σyixi − µyi ||2
− 2 log(σyi).

Since the negative log-likelihood is convex and sufficiently smooth, θ̂ can be
computed using conjugate gradient descent. An illustration is given in Fig-
ure 2.3.

3 Gaussian Generative Analysis
The goal of this section is to introduce the particular framework of Gaus-

sian generative classification that results in simpler classifiers when particular
assumptions are made on the covariance. We assume that X = Rn and we
also set Y = {1, . . . , K} ie there are K classes. The parameters θ = (θ1, θ2)
of the distributions are θ1 = (µ1, . . . , µK ,Σ1, . . . ,ΣK) and θ2 = (p1, . . . , pK),
hence we write the densities as

PX|Y,θ1(x|y) =
1√

(2π)n det(Σy)
exp

(
−1

2
(x− µy)TΣ−1

y (x− µy)
)

and PY,θ2(y) = py with
∑

y∈Y

py = 1.

The negative log-likelihood ` follows from Definition 4 and Equation (2.11)

` (θ) =
1

2

∑

i∈I

n log(2π) + log(det(Σyi)) + (xi − µyi)TΣ−1
yi

(xi − µyi) + log (pyi)
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Figure 2.3: Illustrations of the method introduced in Example 7.
The gray levels are the values of the probability density functions
x 7→ PY |X,θ(x|1) (right) and x 7→ PY |X,θ(x| − 1) (left). The red and
blue circles represents the set where these probabilities are equal
to 0.0001. Down: circularly separable data. Top: non-circularly
separable data.

Proposition 17. The negative log-likelihood ` reaches its minimum at (µ̂, Σ̂, p̂)

∀y ∈ Y , µ̂y =
1

Ny

∑

i∈I

xiδ
y
yi
,

Σ̂y =
1

Ny

∑

i∈I

(xi − µ̂y)(xi − µ̂y)T δyyi

and p̂y =
Ny

|I|
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where δlk =

{
1 if k = l
0 if k 6= l

and Ny =
∑

i∈I δ
y
yi

.

Proof. The proof is standard and appear in under-graduate machine learning
course.

We can now use the decision rule (2.9) to classify any data. Note that the
prior probability PY is estimated by the relative proportion of each class among
the dataset which shifts the decision toward the most represented classes. This
approach is also known as Quadratic Discriminant Analysis (QDA) [93] al-
though it is based on a generative model PX|Y and not on a discriminant
model PY |X . The QDA is an attractive option and appears to be more effi-
cient than a linear classifier, as the decision boundaries are quadratic curves.
However, the potential high dimension of features compared to the number
of samples has a harmful effect on its performance as it becomes difficult to
estimate the covariance matrix. Indeed, when the dimension n of the features
is higher than the number of samples |I|, the estimated covariance matrix Σ̂ is
not full-rank and then is singular. In other cases it can still be ill-conditioned.
Note that in the method described above, the dimension of θ1 is Kn(n + 1).
This phenomenon is also known as the “curse of dimensionality” and we refer
to [105] for details. The dimensionality issue is generally mitigated by dimen-
sion reduction methods, sparsity or relevent subspace selection [19, 20, 173,
154]. In the following sections, we make three different assumptions that aim
at reducing the number of parameters in the covariance matrix.

3.1 Linear Discriminant Analysis

In the Linear Discriminant Analysis (LDA) framework, all the classes share
the same covariance matrix, in other terms

∃Σ ∈ Sn(R), ∀y ∈ Y , Σy = Σ. (3.1)

Such a hypothesis can make the classification more tractable in high dimension
as there is only one covariance Σ to estimate from all samples whatever their
class. However, the dimension of the parameter θ1 = (µ1, . . . , µK ,Σ) can still
be far higher than the size of the dataset. For instance, this dimension is equal
to n(n+K), ie the covariance matrix dimension plus the mean of each of the
K different classes.

3.2 Gaussian Naive Bayes

The Gaussian Naive Bayes (GNB) approach takes its name from the as-
sumption, called “naive”, that each component of a feature vector is indepen-
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dent from the others. Formally,

∀y ∈ Y , ∃(σ1,y, . . . , σn,y) ∈ Rn
+, Σy = diag(σ1,y, . . . , σn,y) (3.2)

where diag(σ1,y, . . . , σn,y) is the diagonal matrix with coefficients (σ1,y, . . . , σn,y).
Under such an assumption the dimension of the covariance matrices is no more
quadratic in n and the dimension of θ1 is reduced to 2Kn.

3.3 Nearest Centroid

The Nearest Centroid (NC) method does not require such a heavy frame-
work. In fact, it can be described as a deterministic approach in which the
function f : X 7→ Y is prescribed by the user. As its name indicates, it consists
in computing the estimated centroid of each class µ̂y following the formula in
Proposition 17 and classifying a sample x according to nearest centroid rule ie

f(x) = argmin
y∈Y

||x− µ̂y||. (3.3)

However, it is interesting to relate this rule to the discriminant analysis frame-
work to see it as a simple particular case. Indeed, if we assume a common
covariance Σ (3.1) that is diagonal (3.2) and an equal occurrence of each class
(ie that ∀y ∈ Y , py = 1/K) then

f(x) = argmax
y∈Y

exp

(
−1

2
(x− µ̂y)T Σ̂−1(x− µ̂y)

)

which is equivalent to a weighted nearest centroid rule. In the particular case
where we do not optimize for the weights and set them to 1 ie Σ = Idn, formula
(3.3) is equivalent to

f(x) = argmax
y∈Y

exp

(
−1

2
||x− µ̂y||2

)

which is exactly the nearest centroid rule. In this framework, the dimension
of θ1 is n(K + 1) for weighted nearest centroid and nK for nearest centroid.

4 Multinomial Logistic Classification
The formulation of multinomial Logistic Classification (LC) resembles Ex-

ample 6 and belongs to the discriminative approach presented in Section 2.2.
A vector x belongs to class y ∈ Y with the following probability:

PY |X,θ(y|x) =
e〈x, ωy〉∑

y′∈Y e
〈x, ωy′ 〉

(4.1)
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where θ = (ω1, . . . , ωK) are called weight vectors and represent each class in
Y . Following Definition 4, the modified loss is

Ṽ (y, x, θ) = −〈x, ωy〉 − log

(∑

y′∈Y

e〈x, ωy′ 〉

)

which yields, using the knowledge of samples and their labels (xi, yi)i∈I , to the
negative log-likelihood

`(θ) = −
∑

i∈I

〈xi, ωyi〉+ log

(∑

y′∈Y

e〈xi, ωy′ 〉

)
.

As the function ` is C2, it is possible to use fast optimization algorithms that
use gradients and Hessian to compute estimates of the weight vectors. Usually,
conjugate gradient and quasi-Newton with limited memory (L-BFGS) are used
to perform this optimization. Moreover this is a convex problem which ensures
the existence of a solution despite it cannot be written in closed form. We use
Equation (2.3) to estimate the class of a feature x. Intuitively, when a vector
x tends to be colinear with ω̂y, the estimated probability PY |X,θ̂(y|x) is high
and x most likely belongs to class y. The LC is always compared to Support
Vector Machines (SVM, see [199], Chapter 5) and they offer similar results.
However for our concern, we prefer LC because it provides a probabilistic
model (although the probabilities obtained with LC are not reliable, especially
in high-dimensional settings), the extension to multilabel classification appears
natural and the optimization is a smooth convex problem.

5 Tools for Analysis
Before going into the details of analysis, let us introduce some useful con-

cepts to have a full understanding of the results. As we saw in Section 2, each
algorithm is able to predict the class f(x) ∈ Y of any feature x ∈ X . To assess
their classification performances we split a dataset into two parts the learning
set (xi, yi)i∈Itrain

∈ (X ×Y)Itrain that is used to estimate the parameters of each
algorithm and the test set (xi, yi)i∈Itest ∈ (X ×Y)Itest that is used to check the
quality of predictions. This is measured by the score.

Definition 5 (Score). The score ιI over a particular test set Itest is defined as
follows

ιItest
def.
=

1

|Itest|
∑

i∈Itest

δf(xi)
yi

,

where |I| denotes the cardinal of I and δlk is the Kronecker symbol defined in
Proposition 17.
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Another tool, named confusion matrix, allows to visualize the proportion
of correctly predicted labels with respect to the ground truth labels.

Definition 6 (Confusion Matrix). The confusion matrix over a particular test
set Itest is the matrix MItest =

(
mItest
y,y′

)
(y,y′)∈Y2

defined by

mItest
y,y′

def.
=

∑
i∈Itest δ

yi
y δ

f(xi)
y′∑

i∈Itest δ
yi
y

,

where δlk is the Kronecker symbol.

If the confusion matrix verifies MIdtest = Id|Y| then the classifier has per-
fectly predicted the classes of the features in the test set. The score and
confusion matrix are subject to bias due to the choice of Itrain and Itest. In
order to reduce this bias, we perform a nfolds cross-validation procedure. Note
that in our setting, the classes have the same number of samples, ensuring that
|I|/|Y| is an integer.

Definition 7 (nfolds Cross-Validation). Let nfolds divide |I|/|Y|. Assume that
I is a partition of nfolds non overlaying test sets of equal cardinal i.e.

I = ∪nfolds

i=1 I
(i)
test with ∀i 6= j, |I(i)

test| = |I(j)
test| and I

(i)
test ∩ I(j)

test = ∅
The nfolds cross-validation consists in learning the algorithm parameters nfolds

times using the training sets I
(i)
train = I\I(i)

test for i ∈ {1, . . . , nfolds}.
The cross-validation allows to compute the average and standard deviation

of the different scores over the folds. It also permits to compute an averaged
confusion matrix. Finally, the averaged of the fitted parameter of each fold
θ̂
I

(i)
test
∈ P are computed both with its standard deviation.

Definition 8. The average of the scores µι and the standard deviation of the
scores σι are

µι =
1

nfolds

nfolds∑

i=1

ι
I

(i)
test

and σι =

(
1

nfolds − 1

nfolds∑

i=1

(ι
I

(i)
test
−mιI )

2

) 1
2

. (5.1)

The averaged confusion matrix is

Λ =
1

nfolds

nfolds∑

i=1

M
I

(i)
test
. (5.2)

The average of the parameter and its standard deviation are

θ̂(av.) =
1

nfolds

nfolds∑

i=1

θ̂
I

(i)
test

and θ̂(st.d.) =



nfolds∑

i=1

(θ̂
I

(i)
test
− θ̂(av.))2

nfolds − 1




1
2

. (5.3)
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As we mention in Section 3, dimension can limit the performances of clas-
sifiers. In order to reduce the dimension of our data we use the Principal
Component Analysis (PCA). This method aims at projecting the data onto a
space of lower dimension npca spanned by the eigenvectors associated to the
npca highest eigenvalues of the covariance matrix of the data.

Proposition 18. Assume that the vectors (xi)i∈I have a zero sample mean. Let
X be the matrix whose columns are the vectors (xi)i∈I . Let C = XTX/(dimX−1)
be the sample covariance matrix and npca 6 |I|.

∃D = diag(λ1, . . . , λ|I|) ∈M|I|(R) and ∃P ∈ O|I|(R), C = PDPT

with λ1 > . . . > λ|I|. Denote P̃ the matrix whose columns are the npca first
columns of P. Then, the data of lower dimension (x̃i)i∈I are the columns of
X̃ = P̃TX.

Finally, we define an original error measure of classification. In particular,
this error measure is useful when the classes have structure. For instance, in
an visual perception experiment, we associate a recorded signal to a common
class when it is obtained under the same stimulation. When the parameters of
two stimulations are close these stimulations are close. It can be then harder
for supervised learning algorithm to discriminate between close stimulations
than between distant stimulations. We face this in the two following chapters.

Definition 9. Let Λ = (Λy,y′)(y,y′)∈Y2 be the averaged confusion matrix and
(θy)y∈Y the parameters associated to the different classes. Moreover, assume
that we have a appropriate distance d between the parameters (θy)y∈Y . Then,
we define the error measure as

dp =
∑

(y,y′)∈Y2

d(θy, θy′)Λy,y′ .

Figure 5.1 displays examples of error measure for different confusion matri-
ces in order to get an idea of the values it takes in simple cases. In the following
chapter, we consider parameter θy = (θ

(1)
y , θ

(2)
y ) ∈ R×R/lZ. Therefore, we use

the following distance between parameters:

d(θy, θy′) =
1

2M1

|θ(1)
y − θ(1)

y′ |+
1

2M2

max
(
|θ(2)
y − θ(2)

y′ |, l − |θ(2)
y − θ(2)
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Supervised Classification For
VSD Imaging

In this chapter, we first describe the human visual pathway, which is sim-
ilar for several mammal species. We then describe intra-cortical processing
and the properties of neurons and their organization. We present the princi-
ple of Voltage Sensitive Dye optical imaging (VSDi) and standard processing,
and go on to reviewing the interactions between machine-learning and exper-
imental neurosciences. We apply the algorithms described in Chapter IV to
different datasets. First, we validate these methods by comparing their re-
sults to those of standard approaches. We provide an automatic method to
determine the appropriate number of PCA components. Then, we introduce
spatially and temporally localized analysis methods in order to identify rele-
vant spatio-temporal features. Finally, we build a simple model of activation
maps obtained under oriented stimulations.
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1 Introduction
In this introduction, we first recall some basic knowledge about the visual

system by describing its biological components at different scales and their
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interactions. Then, we focus on the VSDi recording technique. After a brief
historical reminder, we give details about their principles and classical process-
ing. We broadly review different machine learning approach that deal with
data acquired in neurosciences. Finally, we detail our working environment
and put our work in a more precise context before detailing our contributions.

1.1 Visual System and Intracortical Processing

This Chapter aims at analyzing brain recordings in order to probe vision.
We therefore first outline the functional organization of the visual system from
large to fine scales. This review will help to situate the origins of acquired data
using VSDi and ER. Our description is valid for many mammals, however our
data are collected in cats.

1.1.1 The Visual Pathway

First, visual information reaches the eyes in the form of a light beam, which
is projected onto the retina. The retina is covered in photoreceptor cells con-
taining protein molecules called opsins (rods and cones), which are able to
absorb the photons that compose light and to transmit a signal to bipolar and
ganglion cells. Then, the signal, in the form of action potentials, is conducted
through the optical nerves to the Lateral Geniculate Nucleus (LGN), which is
itself connected to the visual cortex through axons. The visual cortex is com-
posed of different areas called V1, V2,..., V5/MT, etc. They are hierarchically
connected to each other and basically correspond to higher and higher levels
of processing. The connectivity differs from one species to another, however
we generally distinguish feedforward and feedback connectivity. Feedforward
connections link areas from low to high processing levels (LGN→ V1→ V2→
...) whereas feedback connections link areas from high to low processing levels
(... → V2→ V1→ LGN). In fact, connectivity is a more complex process; for
instance, the V1 area has direct feedforward connections to MT, which itself
has direct feedback connections to V1, V2, etc. We refer to the review [28]
for further details. Figure 1.1 shows a drawing of the visual pathway from
the retina to the primary visual cortex (V1). The recordings analyzed in this
chapter are performed in the cat’s primary visual cortex (V1), which is known
to process some basic information about perceived images like position, ori-
entation, spatial and temporal frequencies. In the next paragraph we explain
how the primary visual cortex is organized.
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Figure 1.1: A simplified schema of the human visual
pathway. Source: Miquel Perello Nieto (Creative Com-
mons license), url: https://commons.wikimedia.org/wiki/

File%3AHuman_visual_pathway.svg.

1.1.2 A Layered Cortex

The cortex is organized into six layers, mainly identified by the characteris-
tics of the neurons they contain (size, distribution). For example, layers II-III
contain small- to medium-sized pyramidal neurons whereas layer V contains
large pyramidal neurons. The six layers form a neural network in which we
distinguish horizontal connections from vertical connections. Horizontal con-
nections link neurons of the same layer together whereas vertical connections
link neurons from different layers. The distinction is important because, in
the primary visual cortex (V1), layers IV-VI are known to receive most of
the output connections from the LGN. The neural signal is then conducted
to layers II-III through verticals connections. When the signal is carried by
horizontal connections we talk about lateral propagation or diffusion waves,
whereas when the signal is carried by vertical connections, we talk about stand-
ing waves. Figure 1.2 gives realistic and cartoon views of the cortex layers.

1.1.3 Receptive Fields and Columnar Organization

Before starting to establish the functional organization of V1, one has to
understand in which way V1 neurons are encoding visual information. In 1959,
Hubel and Wiesel published their first paper about receptive fields observed
in the cat’s primary visual cortex [87]. They are not the first authors to use
the concept of receptive fields; however, they provide strong experimental re-

https://commons.wikimedia.org/wiki/File%3AHuman_visual_pathway.svg
https://commons.wikimedia.org/wiki/File%3AHuman_visual_pathway.svg
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Figure 1.2: Cortex layers. (a) Distribution of neurons across lay-
ers: small pyramidal neurons in layer II and large pyramidal neu-
rons in layer V. Source: online material of Professor Mike Claffey
(UC San Diego), url: http://mikeclaffey.com/psyc2/images/

organization-cortical-layers.gif (b) Horizontal connections
in layers II-III. The LGN outputs arrive in layers IV-VI and reach
other layers through vertical connections. Source: own work of
Yannick Passarelli (Phd student at UNIC, CNRS).

sults and give many examples of their variety (see Figure 1.3). A receptive
field characterizes the responses of a single neuron to visual stimulations. The
activity of a neuron is measured by its spiking rate: when it increases, the
neuron’s response is excited, while when it decreases the neuron’s response is
inhibited. A receptive field is a local area of the visual field that produces vari-
ations in the spiking rate of the considered neuron. For example, the center
of an area of cortex can be excitatory and its surround inhibitory. Depend-
ing on neurons, there are many possible arrangements of the local excitatory
and inhibitory areas in the visual fields. Figure 1.3 shows different exam-
ples of receptive field arrangements observed by Hubel and Wiesel. Not all
neurons show a receptive field with two or more clearly identified excitatory
and inhibitory regions, this is why they separated neurons in two categories:
simple cells, that have a simple receptive field with two distinct excitatory
and inhibitory regions and complex cells. In V1, a remarkable property of
receptive fields is their orientation. Following the idea of cortical columns in-
troduced by Mountcastle et al. [128], Hubel and Wiesel found that receptive

http://mikeclaffey.com/psyc2/images/organization-cortical-layers.gif
http://mikeclaffey.com/psyc2/images/organization-cortical-layers.gif


106 V. Supervised Classification For VSD Imaging

fields sharing a same orientation are distributed in a slab shape perpendic-
ularly to the cortex surface [88]. Two different columnar organizations have
now been thoroughly mapped using optical imaging techniques: orientation
columns and ocular-dominance columns. As explained in Section 1.1.2 there

(a)

(b)

Figure 1.3: (a) Examples of receptive fields extracted from [89].
(b) Their corresponding examples using a mathematical formula-
tion (Gabor functions, Gaussian functions and their derivatives).
Triangles and white: excitatory region. Crosses and black: in-
hibitory region.

exists horizontal connections in layers II-III. These connections are organized
in a very specific way, as shown by Bosking et al. [18]. Neurons in the same
orientation columns are mostly connected to neurons in adjacent orientation
columns and to neurons in co-oriented, co-axially aligned columns.

1.1.4 Toward a Model of the Primary Visual Cortex

Strong of the receptive field concept, models of the visual cortex are always
built on the first a priori linear transform made by neurons: the linear dot
product between their receptive field and the stimulus. The result of such a
linear transform is always passed trough a non-linearity to be converted to a
firing rate. Such a model is known as the Linear Non-Linear Poisson spiking
model (LNP) [165]. Other models are explained and compared by Vintch
et al. [203], they show that a cascade Linear Non-Linear Linear Non-Linear
(LNLN) model outperforms three alternative models: the LNP model, the
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Spike Trigger Covariance based LNP (see Section 1.4.1 and [172]) and the
Energy model (see [4]). Using a similar cascade (a LNLN model called Non-
linear Input Model (NIM)), McFarland et al. [121] successfully explain variety
of neuronal responses and perform better than the STA and STC based LNP
models.

All these models underlie the receptive field concept. However, Fournier et
al. [55] show that receptive fields are stimulus dependent: they can be more
simple-like or more complex-like depending on the stimulus statistics. More-
over, these approaches are purely bottom-up ie they model the parallel feedfor-
ward computations performed by the visual cortex neglecting the local recur-
rent computations. As the review of Fregnac et al. [59] suggests, it is promising
to develop a mathematical framework that goes beyond the receptive field con-
cept and that takes local feedback into account. However, these developments
are beyond the scope of this chapter which aims at showing how useful ma-
chine learning techniques can be for the analysis of neurophysiological and
neuroimaging data.

1.2 Principles of Voltage Sensitive Dye Optical Imaging
(VSDi)

In this chapter, we focus on data obtained with Voltage Sensitive Dye
Optical Imaging (VSDi). Before going into the details of how informative
they are about brain functions, we briefly recall some background about these
methods.

The development of voltage sensitive molecules provides neuroscientists
with a new way to observe neurons activity [205]. Embedded in a dye, these
molecules called “fluorophores” are able to bind to neuron membranes over a
small area of cortex from which one could monitor its activity. The local electri-
cal field variations on the dentritic membranes in superficial layers cause small
re-emited fluorescence that is captured by a highly sensitive optical camera,
see [33]. A recording consists in a video of a few squared millimeters of cortex
for a duration of several hundreds of milliseconds at a spatial resolution down
to dozens of micrometers and a temporal resolution of a few milliseconds. Such
a spatial extent corresponds to thousands of neurons, which provides a way to
investigate their spatial organization at a population level ie at the mesoscale.
Moreover, when studying vision, the spatial organization is directly related to
visual field since the layer plane receives a homeomorphic projection of visual
space (contralateral hemifield). Since the cortex consists of six layers, the fluo-
rophores cannot penetrate deep and their major part binds in layers II-III (see
Section 1.1). If intrinsic optical imaging –which detects luminance variation
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due to hemoglobin oxygenation changes (see [16] for a complete description)–
can reach these spatial resolutions, its temporal resolution remains limited by
the few seconds duration of the biological phenomenon on which it relies on.
Therefore, the use of VSD in optical imaging offers a much refined temporal
resolution to study the population dynamic. The first use of voltage sensitive
dye (VSD) dates back to 1973 with the work of Davila, Salzberg, Cohen et al.
that monitored the action potentials of single giant axons [37, 167]. Such a
method now holds a place of choice for the study of cortical activity between
large and small scale recordings (fMRI/EEG vs extra/intra-cellular record-
ings) [75]. Figure 1.4 outlines the experimental setup of VSD imaging used to
study the visual cortex at UNIC laboratory. We refer to [76, 61] for practical
methodology.

1.3 Processing of VSDi Data

In neuroscience, there are many recording modalities in addition to VSDi,
each of them being related in a certain way to brain activity. For instance,
electroencephalography (EEG) records the electric field generated by a large
amount of neurons [187] whereas functional magnetic resonance imaging (fMRI)
measures blood flow variations due to neurons activity [82]. The different sig-
nals correspond to different physical observables, they have their own draw-
backs and are not directly comparable. Therefore, it is necessary to model
the observed signals in order to discriminate the relevant information from
the specific noise of the technique. This becomes more important when the
amount of collected data is limited because the human and financial toll of the
experimental protocols is significant. To this purpose, signal separation and
dimensional reduction methods like Principal Component Analysis (PCA) and
Indenpendant Component Analysis (ICA) or non-linear sparse methods have
shown their usefulness. We review the recent approaches developed for VSDi.
In particular, it is necessary to perform some pre-processing to get relevant fea-
tures before applying more advanced machine learning techniques, especially
for VSDi.

Despite the promising perspectives of the VSDi technique, the signal is per-
turbed by many biological and physical artifacts comprising animal breathing,
heartbeat noticeable in blood vessels, decreasing sensitivity of fluorophores
to light (the so-called “bleaching”) and optical noise of the camera. Exper-
imenters overcome these drawbacks by including blank acquisitions (ie with
no stimulation) in their protocols in order to compare other acquisitions to
this blank reference signals. Although this method has shown its efficiency
for further statistical analysis, it does not allow for a trial to trial analysis.
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Figure 1.4: Typical layout of a VSD of ER experiment at UNIC
lab. The visual stimulation equipment is represented in yellow.
The optical imaging setup is represented in red. The extracellular
recording setup is depicted in green. Finally, the biological mon-
itoring materiel is depicted in orange and cyan. Modified figure
from UNIC lab.

Some solutions coming from signal processing and in particular source separa-
tion analysis [159, 216] show good results using generalized linear models. In
particular, the work of Raguet [155, 156] at UNIC tackles this problem using
sparse regularization signal processing techniques. Focusing on spatial biolog-
ical artifacts Fekete et al. [51] use the resemblance between artifact to identify
and substract them. We also refer to the review [33] and references therein for
details about the importance of modeling the VSDi signal.

Using VSDi, neuroscientists confirmed the existence of functional maps in-
side the cortex of many mammals, such maps are what we call columns in
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Section 1.1.3. A functional or cortical map is the spatial representation of
different areas of cortex activated when processing different features of the
same operation, we use the term activation map when we refer to areas ac-
tivated by the same feature. For instance, when the operation is to detect
orientations, the different features are the different possible values of orienta-
tions. Although spatial resolution has increased compared to intrinsic signal
imaging, the study of cortical maps does not benefit from the high tempo-
ral resolution of VSD imaging. Indeed, these maps are always computed by
averaging the recording over time and repetition of the same experimental con-
dition (eg orientation). Yet, it is crucial to investigate the dynamic aspect of
such a population of neurons to better understand how a stimulus is encoded
in a neural network and how information is propagated in the network. Let
us know give a few examples of use of VSDi to analyze the dynamical neu-
ronal activity. The paper [174] highligths the increasing-decreasing dynamic
of the difference between preferred and orthogonal orientation responses. A
two-layers neural field model [116] (excitatory and inhibitory neurons) can ex-
plain the spatio-temporal activity recorded during the presentation of different
types of simple stimuli. An appropriate use of Singular Value Decomposition
(SVD) shows that some components of the VSDi dynamic match the drifting-
grating (DG) temporal frequency [142]. A comparison of VDSi activity evoked
by DG and natural images reveals that natural stimuli continuously modulate
the responses indicating more complex excitation/inhibition mechanisms [141].
In [32], VSDi is used to understand the lateral spread of orientation selectivity
by comparing responses evoked by local/full-field and center/surround stimuli.
The problem of the transient dynamic due to changes in motion direction is
tackled in [212] where it is shown that cortical dynamic combined with popu-
lation coding is well suited to encode these changes. This work supports the
theory developed by Hansel [14]. In our work, we limit the preprocesing to
debleaching by fitting exponential functions that are further removed from the
signal. Sometimes it appears useful to perform a spatial Gaussian smoothing
in order to remove spatial noise. We also apply some dimension reduction
methods such as Principal Component Analysis (PCA) and make an extensive
use of supervised learning to analyze the dynamic of VSDi recordings.

1.4 Previous Works: Machine Learning for fMRI and
VSDi

Recently, there is a growing interest to apply machine learning data analy-
sis tools to neurophysiology and neuroimaging data. These approaches appear
fruitful for neuroscience, however they are not always known from biologists
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and they still require close collaboration with mathematicians, computer sci-
entists, etc. In experimental contexts in which one collects data under different
particular conditions, supervised classification appears to be well suited to eval-
uate the relevance of these conditions (viewed as labels). However, as we now
detail, it is important to note that the Machine Learning (ML) techniques used
in neurosciences applications vary considerably from one experimental setup
to another.

1.4.1 fMRI

In fMRI data analysis, a lot of effort is dedicated to using ML techniques,
typically in “brain reading”-like scenario. Thirion et al. [188] build an encod-
ing/decoding model that allows to predict and even to reconstruct the stimuli
presented to subject from its fMRI acquisition. Michel et al. [126] perform
a feature selection method based on a mutual information criteria that in-
creases the classification performances of the SVM classifiers. This allows for
a better understanding of where the information is encoded in the brain. In
a similar way, Gramfort and Thirion [73] make use of a TV-`1 penalization as
a feature selector. Again, the work of Varoquaux et al. [200] makes feature
selection using a randomized lasso based method which shows better results
than standard `1/`2 penalization methods. The works of Jenatton [95] and
Murphy [129] base their analysis on logistic classification to identify activation
maps. The review [130] by Naselaris et al. lists the previous studies that use
supervised learning, and exposes the limit of the approach, which is only a
decoding tool and does not explain how signal is encoded. This highlights the
importance of developping encoding models. The team of Gallant developped
several approaches that rely on an encoding model to increase the predictive
power of the decoding model. In the papers [101, 204], they predict the natural
images perceived by subjects using linear and sparse models. Going further,
Neselaris [131] and Nishimoto [136] combine motion-energy models (see [4] and
Section III3) with a Bayesian decoder to reconstruct perceived natural images
from brain activity.

1.4.2 VSDi

In optical imaging, the computation of activation maps [15], although usu-
ally not expressed this way, can be cast as a way to perform supervised clas-
sification. Indeed, it makes use of the label of each recording by computing
the class centroids. However, such a computation does not provide any error
quantification nor is used to make predictions. In intrinsic optical imaging,
SVM are used to compute functional maps [214] and it shows significant im-
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provement compared to class centroids computations that correspond to the
method usually used. In VSDi, the work of Macke et al. [112] makes use
of 2D Gaussian processes to estimate activation maps and directly provides
relevant error bars on these estimates. Ayzenshtat et al. [7, 8] make use of
SVM and kNN to perform classification and prediction in order to quantify
how much information conveyed by neural activity is related to the stimu-
lus. Using these classifiers, they also localize both in space and time the most
predictive features. Finally, Briggman et al. [24] perform a LDA to identify
neuronal populations that can discriminate before any single neurons. To the
best of our knowledge this is the only work that makes use of a classification
method to probe the dynamic of population activation. It is the purpose of
our contributions to develop a principled ML framework to analyze VSDi data
and in particular compute functional maps.

This review of the state of the art reveals that the usage of ML techniques
in the fields of VSDi is very limited. It is one of the purposes of this chapter
to explicitly and systematically propose ML-based solutions of the exploration
of such VSDi datasets.

1.5 Contributions

1.5.1 Recording at UNIC

This chapter is the outcome of a strong interdisciplinary collaboration with
the experimental and theoretical neuroscience team led by Yves Frégnac and
Cyril Monier at UNIC laboratory. As a graduate student in applied math-
ematics, I did not have any specific training to work among neuroscientist
experimenters. During the course of my PhD, as a team member, I have been
confronted to the ordeals that are usually faced by experimenters when col-
lecting data. Being able to conduct a full experiment requires various skills,
from surgery and biological monitoring to electronic and signal processing. Al-
though, many of these experimental aspects remained out of reach (especially
surgery and fine biology) I have been able to punctually assist experimenters,
for instance during anesthetic injections, fundus examination or contact lenses
positioning. During the other steps, I was always invited to watch the interme-
diate states of the animal preparation, for instance scalp removing, craniotomy,
electrodes descent or cortex staining. My role was to design and run the pro-
tocols involving MC developed in Chapter I by the use of the software Elphy
used at UNIC. The discussions with experimenters were fundamental to un-
derstand the new parameters provided by MC and to decide on the optimal
ordering of the stimulation protocols to run.
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1.5.2 Main Contributions

The first major contribution of this chapter is an automatic method to
select the number of components of the Principal Component Analysis (PCA)
based on the classification performances (see Section 4.1). The second main
contribution is a methodology of local space-time analysis of classification per-
formances which enables to identify the most predictive pixels and to precisely
quantify the temporal dynamic (see Section 4.2). The third major contribution
is the definition of a simple and efficient model of the VSDi signal obtained
when using oriented stimuli (see Section 5). In addition, we have several minor
biological contributions related to the experimental protocols that we analyze.
In particular, we find that activation of neural populations is faster when stim-
ulated after a blank than when stimulated after a first oriented stimulus (see
Section V4.3.2). Moreover, the simple proposed model supports the role of lat-
eral connections for a neural population to handle an abrupt change of stimulus
orientation (see 5.3). We provide an online1 example of data synthesis using
the proposed model. Moreover, additional Figures are also available online2.

1.5.3 Related Works

In order to accurately define the context in which spots this chapter we go
back to the references that are the most relevant for our work.

To our knowledge Ayzenshtat et al. [7, 8] are the only ones to make use of
supervised classification as a complementary tool to analyze VSDi data. They
assess the question of how much stimulus related information is conveyed in the
VSD signal. They also assess the question of where this information is located
in space and time by looking for the features that offer the best prediction
performances. Indeed, these are natural questions that emerge when using a
supervised classification approach and that are tackle in fMRI by Gallant and
Thirion’s teams, see Section 1.4.1. Briggman et al. [24] use supervised learning
combined with PCA to make prediction over time and detect a discriminatory
threshold. Their experiments are different from us because they are performed
on the leech in which they record the activity of many dozens of neurons
that are discernible. However, supervised learning help them to draw strong
conclusions about population versus single neuron coding.

Benucci et al. [12] established that activity in the orientation domain emerges
as a standing wave whereas in the spatial domain activity spreading indicates
a traveling wave. Finally, Wu et al. [212] perform some experiment that make

1http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

model_vsd/
2https://jonathanvacher.github.io/chapV-supp.html

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/model_vsd/
https://jonathanvacher.github.io/chapV-supp.html
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/model_vsd/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/model_vsd/
https://jonathanvacher.github.io/chapV-supp.html
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use of a similar protocol to the second one (random dot moving in a single
direction abruptly rotated). They draw the conclusion that cortical dynamic
and population coding combine to handle abrupt changes in motion direction.

2 Material and Methods
The analysis is performed on 6 different datasets recorded from cat primary

visual cortex, area 17. Datasets 1 and 2 were obtained in 2000 at the Weizmann
Institute of Science and were used in the publication by Chavane et al. [32]
that we refer to for details. Datasets 3 to 6 are obtained at UNIC laboratory
by Luc Foubert during my PhD. We describe the experimental details below
for these datasets 3 to 6.

2.1 Animal Preparation for Dataset 3 to 6

Experiments are performed on adult cats, male or female, aged of 12 to
24 months, weighting 2 to 4 kg. Animals are initially anesthetized with intra-
muscular alfaxolone (1 mL kg−1) followed by a cannulation of the femoral vein
in order to anesthetized intravenously. After tracheotomy, animals are artifi-
cially respirated, continuously anesthetized with 1.5 % (0.5 % during recording)
isoflurane added to the 1:2-1:3 mixture of O2/N2O. Minimum alveolar concen-
tration is kept above 1 %. Animals are head fixed on an anti-vibration table.
Craniotomies of about 1.5 cm diameter are performed above area 17 and 18
and the dura is resected. Paralysis is maintained by intravenous injection of
rocuronium bromide (4 mg kg−1 h−1 + glucose + Na/Cl) administered start-
ing less than three hours before running protocols in order to suppress eye
movements. Accommodation and pupil contraction is blocked by atropine and
neosynephrine. Appropriate corrective optical lenses are added depending on
the animal. Area centralis positions are measured before and after imaging.
Stainless steel chambers are mounted and fixed using dental cement and the
cortices are stained for 23 h with voltage-sensitive dye (RH-1691), unbound
dye is washed out after staining. The chambers is then filled with CSF-saline
or silicone oil and closed. Electrocardiogram (ECG), expired CO2, body tem-
perature, and EEG are continuously monitored during the entire experiment.

2.2 Setup

Acquisition and visual stimulation is controlled by the Elphy software
(Gérard Sadoc, CNRS), communicating with the acquisition program provided
by the imaging system for VSD recordings. A CMOS MiCam camera is used,
providing 100 × 100 pixel resolution and up to 10 kHz temporal resolution.
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The recording is performed at 200 Hz temporal resolution i.e. a temporal
sampling of ∆t = 5 ms (104.17 Hz for datasets 1 and 2 i.e. ∆t = 9.6 ms). One
pixel in the recording corresponds approximately to 60 × 60 µm2 of cortical
sheet. Image acquisitions are synchronized with ECG and respiration signals.
For detection of changes in fluorescence the cortex is illuminated with light of
630 nm.

2.3 Visual Stimulation

Data are collected under 3 different protocols described below and sum-
marized in Figure 2.1. A protocol consists in presenting a number C ∈ N
of stimuli variously parametrized. This operation is then repeated a certain
number R ∈ N of times. Except for datasets 1 and 2, a LCD screen (ASUS)
with a resolution of 1920 × 1080 pixels and a refreshing rate of 120 Hz was
placed at 57 cm of the animal so that 1 cm on the screen is equal to one
visual degree. All visual stimuli were generated with Elphy, maximum and
background luminance were set at 40 cd cm−2 and 12 cd cm−2 respectively.

Dataset 1 and 2 Stimuli were contrast sinusoidal luminance gratings with
a spatial frequency of 0.6 c/◦ and drifting in a single direction for 576 ms at
speed v0 = 3.33 ◦ s−1 starting 174 ms after recording onset. Four orientations
were presented (0 ◦, 45 ◦, 90 ◦ and 135 ◦) both full field and locally, totaling
C = 8 stimulation conditions. Local stimuli had a diameter of 2 ◦ and were
presented at an eccentricity of 1-15 ◦, depending on the cortical area location
exposed by the craniotomy. The stimuli presentation were pseudo-randomly
interleaved and were displayed binocularly using VSG series three stimulator
with 38 × 29 cm2, 640 × 480 pixel2 monitor, at a distance of 57 cm from
cat’s eyes at a refresh rate of 144 Hz. For each repetition of the height tested
stimulation conditions a trial under blank stimuli was recorded.

Dataset 3 to 5 Stimuli are high contrast sinusoidal luminance gratings with
a spatial frequency of 0.6 c/◦ and drifting in a single direction for 800 ms at
speed v0 = 3.33 ◦ s−1 starting 140 ms after recording onset. Four orientations
(and two directions) are presented (0 ◦, 45 ◦, 90 ◦ and 135 ◦) and instanta-
neously rotated of +135 (resp. +90) ◦ 400 ms after stimulus onset, totaling
C = 8 stimulation conditions. The stimuli presentation are pseudo-randomly
interleaved and are displayed binocularly. For each repetition of the four tested
orientations a trial under blank stimuli is recorded.
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Figure 2.1: The 3 different protocols used to collect the data.
The sampling time is ∆t whereas ton, tf , toff and T are integers cor-
responding respectively to the frames numbers of stimulus onset,
stimulus rotation, stimulus offset and recording offset.

Dataset 6 Stimuli are Motion Clouds with parameters z0 = 0.6 c/◦, BZ =
1.35, σV = 1

t?z0
with t? = 0.666 ms and drifting in a single direction for 800 ms

at speed v0 = 2.5 c/s starting 140 ms after recording onset. Four orientations
are presented (θ0 = 0 ◦, 45 ◦, 90 ◦ and 135 ◦) with four orientation bandwidths
(σΘ = 0.5, 1.4, 2.0, 2.8) and instantaneously rotated of +90 ◦ 400 ms after stim-
ulus onset, totaling C = 16 stimulation conditions. The stimuli presentation
are pseudo-randomly interleaved and are displayed binocularly. For each rep-
etition of the sixteen tested stimulation conditions a trial under blank stimuli
is recorded.

2.4 Preprocessing Using an Exponential Fitting

As we saw in Section 1.3, VSDi signal is corrupted by different artifacts
(bleaching, heartbeat, breathing), we handle only the bleaching using a expo-
nential fit to the data on every pixel temporal trace. Artifacts were already
removed on dataset 1 and 2, see [32]. For other dataset we apply the following
method. Due to the spatial heterogeneity of illumination during a recording,
before any processing, we delimit a region of interest. To this purpose, we
compute the mean frame by averaging a whole dataset over time, stimulation
conditions and repetitions. Then, we keep the pixels that have values above
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Figure 2.2: An example of 2 different stimuli tested in the
recordings of dataset 6. Left: the spatial power spectrum with
(θ0, σΘ) = (45 ◦, 5 ◦) and (θ0, σΘ) = (135 ◦, 15 ◦). Right: the two
corresponding frames.

a certain percentage threshold rthresh of the maximum. Then, let A = (aq,t)q,t
denotes the pixel values of any recording and

hκq ,τq ,ηq(t) = κq exp

(
− t

τq

)
+ ηq

denotes the bleaching model with (κq, τq, ηq)q being the parameters to be fitted
(t denotes the frame number and q denotes the pixel’s position). In order to
avoid the bias due to pixels’ activation during stimulation, we only use the set
T̂ = {0, . . . , ton, toff + 20, . . . , T} as samples. Therefore, we compute

(κ̃q, τ̃q, η̃q) = argmin
κq ,τq ,ηq

∑

t∈T̂

(
aq,t − hκq ,τq ,ηq(t)

)2

using a gradient descent method. Finally, we remove these fitted functions to
obtain the neuronal response signal as S

def.
= (aq,t − hκ̃q ,τ̃q ,η̃q(t))q,t. Figure 2.3

shows an example of such a preprocessing.

2.5 Recorded Datasets Organization

Such a signal S is computed for every stimulation condition c ∈ C =
{1, . . . , C} and repetition r ∈ R = {1, . . . , R}. In the following, we denote by
T = {0, . . . , T} the set of time samples and by Q = {1, . . . , Q1}× {1, . . . , Q2}
the set of pixels where Q = Q1Q2. The dataset number k ∈ K = {1, . . . , 6}
(corresponding to the numbers of Section 2.3) is therefore denoted

S(k) = (s
(k)
q,t,c,r)(q,t,c,r)∈Q×T ×C×R. (2.1)
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Figure 2.3: Left: the region of interest selected using rtresh. Mid-
dle: the temporal traces of each condition averaged over all pixels
and repetitions. Right: the temporal traces after preprocessing.

Formulating a Machine Learning Classification Problem For the sake
of clarity and to make a proper connection with Section IV, we further describe
the feature, label and sample spaces, respectively X , Y and I previously in-
troduced. These choices are critical to examine the data as they restrain the
reading of the fitted model parameters to chosen feature and label sets. A
dataset S(k) has 4 parameters and there is plenty of ways to define the features
and their label (xi, yi)i∈I ∈ (X ×Y)I . For instance, one can decide to use just
a subset of the stimulation conditions C or to consider that time samples can
be concatenated with the repetition set ignoring the time correlation, etc. In
such a case, the drawn conclusions can only concern the spatial distribution
of information. The simplest choice for the label set is to use Y = C i.e. the
stimulation conditions, however one could decide to group them in an appro-
priate way in order to avoid large number of classes. For example, dataset S(6)

has C = 16 different conditions and thus as much classes, but one can decide
to group the shared orientations in the different pairs of parameter (θ0, σΘ)
reducing the number of classes to |Y| = 4. Finally, it is essential to balance
the dimension of the feature space dimX and the cardinal of samples |I| as
there are only R ∈ {10, . . . , 30} repetitions of the C different conditions in
each dataset.

Cross-Validation We have defined the cross-validation using a partition of
I. As in our context, there are various possibilities to decide for the feature and
sample spaces, it is important to avoid breaking the independence assumption
between the train and test sets to avoid overfitting. Indeed, for instance one
can decide not to take into account the temporal dependencies and consider
a set of samples I = T × Y × R (with Y ⊂ C) supposed to be independent
when training an algorithm. In this case, taking an arbitrary partition of I
is unfortunate because samples that come from different instants of the same
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recording can be both in the train and test sets, which will cause an artificial
increase of scores. To avoid that artifact, cross-validation must always be
performed on non-overlapping partitions of Y ×R.

Technical Details All the analysis that follow were performed using Scikit-
Learn [146]. The numerical computations were run in parallel on the cluster
of CEREMADE - Paris Dauphine University - PSL.

3 Comparison of the Different Algorithms
We compare in this section the classification performances, on different

VSDi datasets, of the methods introduced in Chapter IV:

• Quadratic Discriminant Analysis (QDA, see Section 3),

• Linear Discriminant Analysis (LDA, see Section 3.1),

• Gaussian Naive Bayes (GNB, see Section 3.2),

• Nearest Centroid (NC, see Section 3.3),

• Logistic Classification (LC, see Section 4).

This comparison is performed by choosing the stimuli orientations as labels.
As explained in Section 1, there exists an orientation maps in cat’s visual
cortex, therefore it should be possible to classify the frames of the recordings
according to stimulation of different orientations.

3.1 Pixels as a Feature Space

Design of X and Y To this purpose, we choose the values of pixels (the
frame) as feature space X = RQ i.e. we implicitly suppose that the frames
are independent from each other, discarding any temporal correlation. We
consider 4 classes corresponding to the 4 orientations tested in each dataset
Y = {0, 1, 2, 3}, in fact Y can be considered as a subset of C, however we
renumber these conditions from 0 to 3 for convenience. In datasets S(1) and
S(2), we consider the full field stimulations only; in dataset S(6), we consider
the orientations tested with parameter σθ = 0.5 only. Moreover, we restrict
our attention to the set of time samples between ton + twait and partial offset
tf. Hence we have I = {ton + twait, . . . , tf} × Y ×R and therefore

∀i = (t, c, r) ∈ I, xi = s
(k)
.,t,c,r ∈ X ,
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where s
(k)
.,t,c,r is defined in (2.1). We set twait = 5 for datasets S(1) and S(2) and

twait = 10 for all other datasets. Table 3.1 summarizes the relevant experimen-
tal and pre-processing parameters of every dataset comprising the threshold
rthresh defined in Section 2.4, the temporal sampling of the camera ∆t defined
in Section 2.2 and the other parameters defined above.

rthresh (%) Q ∆t (ms) ton∆t tf∆t toff∆t T∆t C R

S(1) × 9398 9.6 173 749 tf∆t 902 8 32

S(2) × 9398 9.6 173 749 tf∆t 902 8 28

S(3) 35 5 200 600 1000 1280 8 10

S(4) 35 5 200 600 1000 1280 8 10

S(5) 35 5 200 600 1000 1280 8 10

S(6) 45 5 200 600 1000 1280 16 10

Table 3.1: Experimental and pre-processing parameters of the
different datasets.

Results Figure 3.1 summarizes the results showing the average score over
folds µι (defined in Equation (5.1)) and their standard deviation σι (defined in
Equation (5.1)). For each dataset, LC shows the best scores with reasonable
standard deviations. It is followed by LDA with 0 to 30 percentage points
of score below also with reasonable standard deviations. The NC and GNB
methods perform similarly but far worst than LC and LDA (scores around
30-40 %). Finally, the QDA performs at chance level. The bad performances
of QDA is certainly due to the dimension issue mentioned in Section 3. Indeed,
there are only 400 to 1200 samples per class to estimate the covariance of each
class compared to the high dimension of the feature space, a few thousands. In
contrast, the covariance in LDA is better estimated as the samples number and
the features dimension are of the same order of magnitude, which explains the
correct results. Finally, the poor performances of GNB can be explained by the
strong assumptions of feature components (i.e. pixels) independence which is
not assumed in LDA and LC. Indeed, the pixels, from which we compute an
orientation map (see next Section 4.1), show a strong specific correlation which
gives to the orientation map its geometrical organization, see [6] for a detailed
study of their mathematical properties. In order to check if the performance
are equivalent for each class, Figure 3.2 shows the averaged confusion matrices
Λ (defined in Equation (5.2)) obtained using the five methods for datasets S(2)

and S(5). When overall performances are good, the prediction for the different
classes are similar. On the contrary, when the performances are bad, strong
biases appear. In Figure 3.2(a), the GNB and NC methods tend to predict any
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Figure 3.1: Classification performances of the different algorithms
on the 6 datasets. QDA: Quadratic Discriminant Analysis. LDA:
Linear Discriminant Analysis. GNB: Gaussian Naive Bayes. NC:
Nearest Centroid. LC: Logistic Classification.

class to belong to class 0 or 2, as the high values of columns 0 and 2 indicate.
In Figure 3.2(b), these two methods tend to predict any class to belong to
class 1 or 3, as the high value of the corresponding columns indicate. Finally,
the distance dp (defined in 9) between stimulation parameters associated to
predicted labels and parameters associated to true labels is close to 0 when
the performances are good.
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Figure 3.2: Confusion matrices Λ (defined in (5.2)) and the dis-
tance dp (defined in 9) obtained for each algorithm for dataset S(2)

(a) and S(5) (b). QDA: Quadratic Discriminant Analysis. LDA:
Linear Discriminant Analysis. GNB: Gaussian Naive Bayes. NC:
Nearest Centroid. LC: Logistic Classification.
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3.2 Dimension Reduction Using PCA

In the previous section, we choose to use the pixels’ value as feature space
X = RQ which limits the performances of QDA and GNB respectively for
two reasons: the high number of features compared to samples and the as-
sumption of pixels independence. In particular, the performances of LDA and
QDA can be improved by regularizing the covariance matrix (shrinkage to
identity). However, we choose to overcome these drawbacks by using Princi-
pal Component Analysis (PCA, see Section 5) which allows to compute new
features in a low dimensional space: (x̃i)i∈I ∈ X̃ with npca = dim X̃ < Q. In
addition, the component (x1

i , . . . , x
npca

i ) of the vector xi are uncorrelated. In
order to select an appropriate number of PCA features we test different values
npca ∈ Epca = {5, 10, 20, 40, 80, 160} and compute the associated average score
over the folds µι(npca) (defined in Equation (5.1)). The number of PCA fea-
tures that provides the highest score is selected, see Figure 3.3. Then, using
this number of PCA features, we compare the scores of the five methods, see
Figure 3.4.

Results In Figure 3.3, the left graph shows the average score as a function
of the number of PCA features µι(npca) with npca ∈ Epca for the five methods
(QDA, LDA, GNB, NC, LC) applied to dataset S(4). In every case, the score
increases until npca = 10 features are selected and then it decreases. The right
graph shows a normalized version of the score

µι(npca)
def.
=

exp (µι(npca))

max
n∈Epca

(exp (µι(n)))

as function of npca highlighting that the highest score is obtained for npca = 10.
Such an normalization is sometime necessary to clearly identify the appropriate
number of features. Significant enough to be noted, over the six datasets
the number of selected PCA features is often the same for every algorithms
and is often equal to 10, 20 or 40. Such a behavior means that the most
relevant features about stimuli orientation is among the first dozens of PCA
features. This result is in accordance with the previous work of Yavuz [216]
who empirically selects the PCA features that are able to discriminate the
different orientations among the first PCA features.

Using the appropriate number of features (npca = 10), Figure 3.4 shows the
average scores µι and their standard deviation σι (defined in Equation (5.1)).
Compared to the previous section, the scores of QDA and GNB slightly im-
prove as expected, showing scores similar to LC. The score of LDA also reaches
the level of LC and even outperforms LC for the datasets S(3) and S(4). The
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Figure 3.3: Dataset S(4). Left: the average score µι(npca). Right:
the normalized average score µι(npca).

PCA dimension reduction has almost no effect only on NC that performs
equally as with no PCA, see Figure 3.1. The standard deviations appear to
be stable or reduced (check LC for datasets S(3) and S(4)). Furthermore and
although the duration are not shown here, it is important to note that the com-
putation time reduces significantly because algebraic computation are faster
in space of dimension at least hundred times smaller than the original pixels’
space.
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Figure 3.4: Classification performances of the different algorithms
on the six datasets and using npca = 10 PCA features. QDA:
Quadratic Discriminant Analysis. LDA: Linear Discriminant Anal-
ysis. GNB: Gaussian Naive Bayes. NC: Nearest Centroid. LC:
Logistic Classification.
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Main Conclusions

• LC and LDA perform best both on pixels and PCA features.

• The discriminant information about stimuli orientation is contained
in the first dozens of PCA features.

• The dimension reduction using PCA slightly improves the perfor-
mances of GNB and QDA which shows the existence of significant
spatial correlations.

4 Data Analysis Using Logistic Classification
The LC shows the best classification performances and is therefore selected

for further analysis. Although this performance quantify how much informa-
tion the signal carries about its class, the scores do not provide any clue about
how this information is encoded. Answers are to be found in the way LC is
classifying the data i.e. in the weight vectors. We first compare in Section 4.1
the average of the fitted weight vectors (ω̂ave.

1 , . . . , ω̂ave.
K ) with the estimated

class centroids (µ̂ave.
1 , . . . , µ̂ave.

K ) that can be used to compute orientation maps
(ωave.

y and µ̂ave.
y for y ∈ Y are defined in Equation (5.3)). This first step ensures

the consistency with previous works. Then in Section 4.3, we use LC to make
prediction locally in time in order to explore the dynamic of classification per-
formances and of the orientation maps emergence. Finally, we use a feature
selection method to find the most informative pixels for classification. The
examination of important spatio-temporal features enables a precise analysis
of the structure of the information representation in cortex (when observed
through the VSDOI prism).

Recall that in our analysis of orientation Y = {0, 1, 2, 3}, i.e. there are 4
classes corresponding to the 4 tested orientations denoted (θy)y∈Y =

(
0, π

4
, π

2
, 3π

4

)

in radian.

4.1 Comparison of Orientation Maps

We assume that each class y ∈ Y corresponds to a particular stimulus
orientation θy. An orientation map O = (oq)q∈Q is computed from every single

orientation activation map M (y) = (m
(y)
q )q∈Q. We compare the maps computed

using the class centroids as activation maps i.e. M (y) = µ̂ave.
y to the ones

computed using the weight vectors of LC as activation maps i.e. M (y) = ω̂ave.
y .

Definition 10 (Orientation Map). Assume that every activation map (M (y))y∈Y
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have a zero mean, then

∀q ∈ Q, oq =
1

2
Arg

(
1

|Y|
∑

y∈Y

m(y)
q exp (2iπθy)

)
,

where Arg is the function that give the argument of a complex number in [0, 2π).

Results with no PCA Figures 4.1 and 4.2 show activation maps (ω̂ave.
y , µ̂ave.

y )

and their corresponding orientation maps respectively for datasets S(2) and
S(3). These figures also show the standard deviation of the class centroids and
weight vectors (µst.d.

y , ωst.d.
y ). In Figure 4.1, the weight vectors ω̂ave.

y are much
noisier than class centroids µ̂ave.

y which leads to a map that is noisier for LC.
However, the orientation columns appear to be the same in each map. The
standard deviation µst.d.

y of NC is slightly higher than ωst.d.
y relatively to their

mean. The high level of µst.d.
y is mainly due to the illumination conditions. In

Figure 4.2, again class centroids appear smoother than weight vectors and so
the resulting maps are. The orientation columns are approximately the same in
each maps, however the map obtained with class centroids shows a prevalence
of green ( 60 ◦) and purple ( 150 ◦) domains whereas the map obtained with
weight vectors shows more balanced columns. Such a difference is probably
due to illumination conditions. Finally, the standard deviations are quantita-
tively higher for the class centroids than for the weight vectors. Moreover, the
standard deviations of weight vectors show that the blood vessels are a source
of noise whereas the standard deviations of class centroids are mainly related
to illumination conditions. Figure 4.3 shows the absolute difference between
maps obtained using class centroids and weight vectors. As orientation maps
take their value in the torus Z/πZ, we choose an appropriate distance on the
torus, for all orientation maps O and O′ and for all pixels q ∈ Q

d
(
oq, o

′
q

)
= min

(
|oq − o′q|, 180− |oq − o′q|

)
. (4.1)

The Figure 4.3 show that the difference between maps is mainly due to the
noise of maps obtained using LC.

Results using PCA Figures 4.4 and 4.5 are similar to Figure 4.1 and 4.2
except that a PCA has been performed to reduce the dimension before the
classification, see Section 3.2. The effect of PCA is particularly visible in
the weight vectors of LC, in which a large amount of noise is removed. The
map obtained with LC displays a new orientation column in the top right
corner of the map when compared to the map obtained with NC. The absolute
differences between maps (Figure 4.6) are less contaminated by such a noise
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and show that the differences are noticeable at pinwheels and where the color
gradient is high, this is particularly true for Figure 4.6(a). For dataset S(2), the
PCA has a limited effect on the errors (µst.d.

y , ωst.d.
y ), which are quantitatively

the same as when no PCA is used. For dataset S(3), the PCA reduces a
little the errors ωst.d.

y but not µst.d.
y relatively to the weight vectors and the

class centroids. The error µst.d.
y shows more structure than when the PCA is

not used. Finally, the difference between maps shown in Figure 4.6 appears
less corrupted by noise when PCA is used. However, this is only visible in
Figure 4.6(a).

Remarkable Properties of Activation Maps As this is the first time
that we show some activity maps in this manuscript, we find important to
precise two remarkable mathematical properties that are verified by activation
maps:

• Two activation maps evoked by stimuli of orientations that differ from
45 ◦ are orthogonal.

• Two activation maps evoked by stimuli of orientation that differ from
90 ◦ are in phase opposition.

The phase opposition can be checked on the different mentioned figures. How-
ever, we check our claim by computing a cosine similarity index defined by

∀(y0, y1) ∈ Y2, csi(y0, y1) =
〈ω̂ave.

y0
, ω̂ave.

y1
〉

||ω̂ave.
y0
||||ω̂ave.

y1
|| .

where 〈·, ·〉 is the Euclidean scalar product and || · || is the Euclidean norm.
When the cosine similarity index is equal to 1, the vectors are colinear. When
it is equal to 0, the vectors are orthogonal. Finally, when it is equal to −1,
the vectors are colinear but in opposite directions. Table 4.1 shows values that
support our claim.

y0/y1 0/1 1/2 2/3 3/0 0/2 1/3
csi -0.040 0.170 -0.120 -0.014 -0.990 -0.997

Table 4.1: Cosine similarity index for relevant activation maps
among (ω̂ave.

y )y∈Y obtained with LC on dataset S(2).
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Main Conclusions

• Activation maps and orientation maps obtained with LC are consistent
with those obtained with NC.

• Cross-validation provides a way to quantify errors in the estimation of
activation maps.

• PCA reduces noise in activation maps and orientation maps.
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Figure 4.1: Dataset S(2). (a) Top: weight vectors ω̂ave.
y and their

corresponding orientation map. Bottom: errors on the weight vec-
tors ωst.d.

y . (b) Top: class centroids µ̂ave.
y and their corresponding

orientation map. Bottom: errors on the class centroids µst.d.
y .



4. Data Analysis Using Logistic Classification 129

(a)

0 deg. 45 deg. 90 deg. 135 deg.

0.0604

0.0304

0.0004

0.0296

0.0596

0.00080

0.00567

0.01055

0.01543

0.02030

0

45

90

135

180

(b)

0 deg. 45 deg. 90 deg. 135 deg.

0.491

0.240

0.012

0.264

0.515

0.0293

0.0897

0.1502

0.2106

0.2711

0

45

90

135

180

Figure 4.2: Dataset S(3). (a) Top: weight vectors ω̂ave.
y and their

corresponding orientation map. Bottom: errors on the weight vec-
tors ωst.d.

y . (b) Top: class centroids µ̂ave.
y and their corresponding

orientation map. Bottom: errors on the class centroids µst.d.
y .
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Figure 4.3: Distance d (see Equation (4.1)) between orientation
maps obtained using weight vectors and class centroids as activation
map, see 4.1. (a) Dataset S(2). (b) Dataset S(3).
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Figure 4.4: Dataset S(2) after dimension reduction to npca = 20.
(a) Top: weight vectors ω̂ave.

y and their corresponding orientation
map. Bottom: errors on the weight vectors ωst.d.

y . (b) Top: class
centroids µ̂ave.

y and their corresponding orientation map. Bottom:
errors on the class centroids µst.d.

y .
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Figure 4.5: Dataset S(3) after dimension reduction to npca = 20.
(a) Top: weight vectors ω̂ave.

y and their corresponding orientation
map. Bottom: errors on the weight vectors ωst.d.

y . (b) Top: class
centroids µ̂ave.

y and their corresponding orientation map. Bottom:
errors on the class centroids µst.d.
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Figure 4.6: Distance d (see Equation (4.1)) between orientation
maps obtained using weight vectors and class centroids as activation
map, see 4.1. (a) Dataset S(2). (b) Dataset S(3). The dimension
is reduced to npca = 20 using PCA.
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4.2 Spatially Localized Predictions

The LC method has shown good classification performances using all pixels
(projected or not onto the low dimensional PCA features space). One inter-
esting question is to determine which pixels are most useful for prediction. To
this purpose we evaluate the prediction performances obtained using a local
subset of the weight vector’s pixels. We use a two-dimension Gaussian sliding
window

∀q′ ∈ Q, gq(q
′) = exp

(
−||q

′ − q||2
2σ2

g

)

where σg is the window size. The window weights the pixels q′ of the weight
vectors around each pixel q. We use these windowed weight vectors to make
predictions. The windowing is performed with null conditions at the border
of the weight vectors i.e. ∀q′ ∈ Q, gq(q′) = 0 if and only if q′ − q /∈ Q.
The probabilities of logistic classification defined in Equation (4.1) is therefore
modified in order to obtained the following localized predictor centered at pixel
q ∈ Q,

PY |X,θ,q(y|x) =
e〈x, gqωy〉∑

y′∈Y e
〈x, gqωy′ 〉

.

This probability is then plugged in Equation (2.3) to make prediction. We can
then compute an average score µι,q for each pixel q.

Results For the datasets S(3) to S(6) we use a Region of Interest (ROI) that
is composed of pixels which luminance is above a percentage threshold rtresh

of the maximum. In order to assess the relevance of this ROI, we show in
Figure 4.7 the average score µι,q for each pixel q ∈ Q obtained on dataset
S(3) with no ROI selected beforehand and σg = 15. First, the region of highly
predictive pixels (ie with high local score µι,q) correspond approximately to the
selected ROI using the thresholding, see Figure 4.7(b). This is not surprising
because VSD signal is highly dependent on illumination. Second, this region
corresponds actually to the region where we identify the orientation map, the
remaining pixels of the image consist of noise and are not useful for prediction.
The parameter σg indicates the level of locality of the prediction. When it
becomes too small, the score reaches the chance level, when it becomes too
high, for all pixels the prediction score converges to the score obtained using the
entire weight vectors. Figure 4.8 shows the local scores µι,q for each pixel q ∈ Q
computed using σg = 2, σg = 5 and σg = 15. Above 30, σg is not informative
because each pixel tends to have the same prediction score. However, very
small value (1 to 5) highlights a kind of map skeleton. This skeleton follows iso-
oriented lines that separate areas of small color gradient. Moreover, the lines of
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Figure 4.7: Results for dataset S(3). From left to right: Gaussian
window gq then for each pixel q ∈ Q, local scores µι,q, orientation
selectivity index oiq (defined in (11)) and orientation preference oq
(defined in (10)). (a) No ROI selected during preprocessing. (b)
ROI selected using rtresh = 35.

this skeleton cross at pinwheels which are singularities of the map where all the
orientations are represented in their neighborhood. The reason why prediction
is maintained at a high level above chance around pinwheels and between
areas of small color gradient is probably that the value of certain pixels highly
increase when a particular orientation is presented whereas others increase
moderately. In datasets S(1) and S(2), the protocols involve global versus local
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Figure 4.8: Results for dataset S(2). Gaussian window gq and
local scores µι,q for each pixel q ∈ Q. From left to right: σg = 2,
σg = 10 and σg = 15.

stimulation. Since the visual field is mapped to the visual cortex [114], a local
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stimulation is supposed to activate only a subset of the recorded cortical area.
Pixels’ activation is measured by their mean luminance, activated pixels are
distinct from orientation selective pixels measured by an orientation selective
index.

Definition 11 (Orientation Selectivity Index). Assume that every activation
map (M (y))y∈Y have a zero mean, then

∀q ∈ Q, oiq =

∣∣∣∣∣
1

|Y|
∑

y∈Y

m(y)
q exp (2iπθy)

∣∣∣∣∣ .

In Figure 4.9, we compare orientation selectivity index to local scores. The
first quantifies how much a pixel is selective whereas the second quantifies
how much the neighborhood of a pixel is able to discriminate between orien-
tations. Since a large enough neighborhood of a highly selective pixel must be
able to discriminate between orientation such a comparison make sense. As
expected the discriminant areas correspond approximately to highly selective
areas. However, the pinwheels are not highly selective whereas their neigh-
borhood is discriminant. For the local stimulation, the discriminant area keep
located at the corresponding retinotopic position of the visual stimulation, as
for the selective area.

Main Conclusions

• Local prediction performances is consistent with the ROI selection
based on luminance levels.

• The size σg of the local neighborhood allows to evaluate local scores
prediction at various scales.

• Small local neighborhoods provide a skeleton that is not yet fully un-
derstood.

• Local prediction performance is a new measure that quantifies the
discriminative power of a pixel and its neighbors.
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Figure 4.9: Results for dataset S(2). From left to right: Gaussian
window gq then for each pixel q ∈ Q, local scores µι,q, orientation
selectivity index oiq (defined in (11)) and orientation preference oq
(defined in (10)). (a) Full field stimulation. (b) Local stimulation.

4.3 The Temporal Dynamic of Orientation Maps and
Prediction

The previous section shows that LC and NC give similar results for the
computation of orientation maps. It enables the computation of a localized
prediction score that we can use to quantify how informative an area around a
pixel is. As we mention in Section 1, the VSDi has a good temporal resolution
which allows to probe the dynamic of neural activation. Therefore, it is of
particular interest to estimate weight vectors, orientation maps and scores
over time.

Design of X and Y For this purpose we consider a sample set indexed by
the time It = {t} × Y ×R for all t ∈ T with Y = {0, 1, 2, 3} i.e. we consider
only 4 classes consisting of the 4 orientations tested. We keep the same feature
space X = RQ. Therefore

∀t ∈ T , ∀i = (t, c, r) ∈ It, xt,i = s.,t,c,r ∈ X .
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In such a setting, we can compute, at each time t, the average of the scores
µι,t, their standard deviation σι,t, the average of the estimated weight vectors
ω̂ave.
y,t , the corresponding orientation maps Ot, the local score µι,q′,t for each

pixel q′ ∈ Q and the confusion matrix Λt.
Such a design of X and Y is necessary to compute the weight vectors

ω̂ave.
y,t and its corresponding orientation maps Ot at each time t ∈ T . However

the scores µι,t, their standard deviation σι,t and the local scores µι,q′,t can
be computed using the weight vectors ω̂ave.

y of Section 4.1. When computed

this way, we denote respectively µ̃ι,t, σ̃ι,t, µ̃ι,q′,t, Λ̃t the scores, their standard
deviation, the local scores and the confusion matrix.

4.3.1 Full Field vs Local Stimulation

First, we compare the dynamic of global scores µ̃ι,t for all t ∈ T for the full
field and local stimulation tested in datasets S(1) and S(2) (see Figure 4.10). For
the global stimulation, the score starts to increase significantly above chance
level about 20 ms after stimulus onset, it reaches more than 95% of correct
prediction about 50 ms after stimulus onset. For the local stimulation, the
dynamic is a little slower than the dynamic of the full field stimulation. In
Figure 4.10, the score starts to increase about 30 ms after stimulus onset
and reaches almost 80% of correct prediction about 90 ms after stimulus on
set. For the local stimulation, the score reaches a plateau level between 60%
and 80% whereas it stays near 100% for the full field stimulation. The global
scores over time measure the dynamic of orientation discriminability. The more
selective the pixels are, the more they are able to discriminate the orientations.
Thus, it is interesting to compare the dynamic of selectivity index measured
by Sharon et al. [174] and our measure of discriminability. Not surprisingly,
the times at which selectivity index starts to increase and peaks are similar to
the ones we report. However, our scores are computed over the whole cortex
whereas Sharon limits the analysis of selectivity index to pixels in a highly
reproducible region. The score µ̃ι,t is a global measure of discriminability.
Now, we compare the dynamic of local scores µ̃ι,q,t to the dynamic of orientation
maps Ot for both local and full field stimulation. Figure 4.11 and 4.12 displays
these local scores (with σg = 10) and maps for the dataset S(2). For both
full field and local stimulation, the different orientation columns are visible
in less than 20 ms after stimulus onset. It is striking that the map shows its
geometrical structure in regions where the local score is low. Around time
211.2 ms in Figure 4.11(b) and 4.12(b), the map is geometrically structured
outside the highly discriminatory pixels inside the black line. After 40 ms for
full field stimulus (resp. 60 ms for local stimulus), the map is stable until
the end of the stimulation. For full field stimulation, the local score µι,q,t first
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Figure 4.10: Score µ̃ι,t for all t ∈ T for dataset S(2). (a) Full field
stimulation. (b) Local stimulation.

starts to increase locally (in a skeleton form, probably due to the value of σg)
then it builds up until half of pixels is highly discriminant (µ̃ι,q′,t > 80 %,
70 ms after stimulus onset). For the local stimulation, the local score starts to
increase locally and then builds up but stays limited to the retinotopic region
corresponding to the visual field where the stimulus is presented (µ̃ι,q′,t > 40 %,
70 ms after stimulus onset).
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Figure 4.11: Full field stimulation for dataset S(1). (a) Local
score µι,q,t for each pixel q ∈ Q using σg = 10). (b) Maps Ot

at time t indicated below each frame. The black line delimits the
pixels with a local score above 80%. Supplementary figure online.
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Figure 4.12: Local field stimulation for dataset S(1). (a) Local
score µι,q,t for each pixel q ∈ Q using σg = 10). (b) Maps Ot

at time t indicated below each frame. The black line delimits the
pixels with a local score above 40%. Supplementary figure online.

https://jonathanvacher.github.io/chapV-supp.html
https://jonathanvacher.github.io/chapV-supp.html
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Main Conclusions

• Classification score grows slower for the local stimulation than for the
full field stimulations.

• The map becomes visible in areas before pixels reach a significant
score.

• For the local stimulation, highest local scores are limited to the retino-
topic limit of the stimulus.

4.3.2 Sharp Rotation of the Stimulation

Analyzing the dynamic of datasets S(3) and S(4) is important to under-
stand how the neural population switches between activation maps. Indeed,
the protocols described in Section 2.3 make use of stimuli with a temporal dis-
continuity (instantaneous rotation). The consequences of such a discontinuity
over the VSD signal is likely informative to tackle the question of propagating
and standing waves. First, we focus on the dynamic of global scores µ̃ι,t for
the two datasets S(3) and S(4). At mid stimulation time 400 ms after stimulus
onset it rotates of 135 ◦ for dataset S(3) and of 90 ◦ for dataset S(4). Such a
rotation corresponds to a circular permutation of the labels (three step right
for the 135 ◦ rotation and two step right for the 90 ◦ rotation), it is therefore
useful to consider Ỹ = Z/|Y|Z as label set instead of Y . Figure 4.13 displays
two scores: the blue score µ̃bι,t is computed using the original labels of the
features in the test set and the red score µ̃rι,t is computed using the permuted
labels of the features in the test set,

µ̃bι,t =

∑
y∈Ỹ Λ̃y,y,t∑

(y,y′)∈Ỹ2 Λ̃y,y′,t

and µ̃rι,t =

∑
y∈Ỹ Λ̃y+k,y,t∑

(y,y′)∈Ỹ2 Λ̃y,y′,t

.

where k = 2 for the 90 ◦ rotation and k = 3 for the 135 ◦ rotation. These
scores allow to compare the dynamic of activation and the dynamic of acti-
vation after the rotation. In both datasets, the activation score µ̃bι,t (blue)
reaches its maximum level about 55 ms after stimulus onset and it starts to
decrease 50 ms after stimulus rotation and reaches chance level 100 ms after
stimulus rotation. Again in both dataset, the activation score after rotation
µ̃rι,t (red) increase progressively 50 ms after stimulus rotation. For dataset S(3)

the score after rotation µ̃rι,t reaches 60 % about 135 ms after stimulus rotation,

for dataset S(4) the score after rotation µ̃rι,t reaches 60 % about 160 ms after
stimulus rotation. Finally, the score after rotation µ̃rι,t starts to decrease about
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90 ms after stimulus offset. These results suggest that the neural population is
activated faster when stimulated after blank than when stimulated after a first
stimulation. Another interesting computation is the mean distance between
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Figure 4.13: Score µ̃bι,t (blue) and µ̃rι,t (red) for all t ∈ T . (a)

Dataset S(3). (b) Dataset S(4).

the maps Ot and the map O (shown in Figure 4.2), at each time t ∈ T

mdt =
1

V

∑

q∈Q

d(ot,q, oq).

The mean md is displayed in Figure 4.14 for dataset S(3) and S(4) showing the
dynamic of the map after the stimulus rotation. For both datasets, the map is
established 50 ms after stimulus onset. Then, still for both dataset, the map
differentiate 50 ms after stimulus rotation. The map reaches its stationary
state about 100 ms after stimulus rotation.
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Figure 4.14: The mean distance between maps mdt for t ∈
{ton∆t, . . . , toff∆t} . (a) Dataset S(3). (b) Dataset S(4).



4. Data Analysis Using Logistic Classification 141

In order to check if logistic classification is correctly switching to the correct
orientation after the rotation, we check the class predictions. This informa-
tion is contained in the confusion matrix Λt and is illustrated in Figure 4.15
corresponding to datasets S(3) and S(4).
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Figure 4.15: Relevant coefficients of the average confusion matrix
Λ̃t computed at each time t ∈ T . (a) Dataset S(3). Coefficients
Λ̃y,y,t and Λ̃y+3,y,t for y ∈ Ỹ . (b) Dataset S(4). Coefficients Λ̃y,y,t

and Λ̃y+2,y,t for y ∈ Ỹ . Supplementary figure online.

https://jonathanvacher.github.io/chapV-supp.html
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For example in dataset S(4), a recording under horizontal stimulation (la-
bel y = 0) is supposed to be correctly predicted by the activity map ω̂ave.

0 .
After the orthogonal rotation, the signal is recorded under vertical stimula-
tion (label y = 2) and it is, therefore, supposed to be correctly predicted by
the activity map ω̂ave.

2 . In both cases, this is what happened and the tran-
sitions are as fast as for the global score µ̃ι,t. However for the two bottom
graphs of Figure 4.15(b), after the rotation, the prediction does not reach a
high probability. These two classes slow down the global score switching dy-
namic of dataset S(4) compared to dataset S(3), explaining the differences in
the reported times 135 ms vs 160 ms, see above.

Finally, to understand the dynamic of the neural population we show in
Figure 4.16 and 4.17 the weight vectors ω̂ave.

y,t for each class y ∈ Y and the
scores µ̃ι,t (see Figure 4.13) at transition times t indicated under each frame.
Figure 4.16 shows that for the 135 ◦ rotation, the area of activity of the initial
orientation is moving continuously towards the area of activity of the new
orientation. However, this transition is much confused for the 90 ◦ rotation,
see Figure 4.17. For dataset S(3), the key times that support our claim are
t = 620 ms and t = 630 ms where activity has begun to switch but has
not completely switched yet. For dataset S(4), the key time is t = 630 ms
where high activity level are spread in a noisy fashion ((a)(b)), absent ((c))
or prevalent ((d)).

Main Conclusions

• Activation of the neural population after blank stimulation is faster
than activation after a first stimulation.

• Activation maps smoothly switch for the 135 ◦ rotation.

• Activation maps abruptly switch for the 90 ◦ rotation.
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Figure 4.16: Dataset S(3) (orientation shift +135 ◦). Normalized
weight vectors ω̂ave.

y,t and scores µ̃ι,t (Left: blue scores. Right: red
scores. See Figure 4.13) for time indicated under each frame. The
red contours are the level set of the current normalized weight vec-
tors at 0.5. The blue contours are the level set of the normalized
weight vectors ω̂ave.

y computed in Section 4.1 at 0.5. (a) Label y = 0
corresponding to a 0 ◦ orientation. (b) Label y = 1 corresponding
to a 45 ◦ orientation. (c) Label y = 2 corresponding to a 90 ◦

orientation. (d) Label y = 3 corresponding to a 135 ◦ orientation.
Supplementary figure online.
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Figure 4.17: Dataset S(4) (orientation shift +90 ◦). Normalized
weight vectors ω̂ave.

y,t and scores µ̃ι,t (Left: blue scores. Right: red
scores. See Figure 4.13) for time indicated under each frame. The
red contours are the level set of the current normalized weight vec-
tors at 0.5. The blue contours are the level set of the normalized
weight vectors ω̂ave.

y computed in Section 4.1 at 0.5. (a) Label y = 0
corresponding to a 0 ◦ orientation. (b) Label y = 1 corresponding
to a 45 ◦ orientation. (c) Label y = 2 corresponding to a 90 ◦

orientation. (d) Label y = 3 corresponding to a 135 ◦ orientation.
Supplementary figure online.

5 A Steerable Model of Activation Maps
In this section, we develop a simple model of activation maps. Such a

model provides a way to interpolate between activation maps, it is then pos-
sible to simulate the activation maps learned after the abrupt rotation of the
stimulus in protocols 3 and 4, see Figures 4.16 and 4.17. We also detail some
consequences of the model on the computation of orientation maps defined in
Equation (10). Our model is related to the seminal paper of Swindale [185]

https://jonathanvacher.github.io/chapV-supp.html
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about tuning curves (Proposition 19). The main advantage of our method is
its simplicity compared to other approaches [100, 9].

5.1 The Steerable Model

The model is similar to the concept of steerable filters [113]. Knowing
two filters f1 and f2, one can compute an oriented version of these filters
by linear combination. For instance, let f1 = ∂/∂x and f2 = ∂/∂y be the
horizontal and vertical derivatives on the plane. Then, for any θ ∈ [0, 2π], gθ =
cos(θ)f1+sin(θ)f2 is the directional derivative of angle θ. By the use of complex
numbers, we have the following Definition.

Definition 12. Let θ0 ∈ R/πZ and θ1 = θ0 + π
4
. The complex maps (Zθ)θ∈R/πZ

associated to the activation maps (M (θ0),M (θ1)) is

∀θ ∈ R/πZ, Zθ = (M (θ0) + iM (θ1)) exp (−2i(θ − θ0)) .

The activation map evoked by a stimulus with orientation θ ∈ R/πZ is

M (θ) = Re(Zθ).

The interpolation between maps is straightforward because it follows the
linear interpolation between orientations. For any (θ0, θ1) ∈ (R/πZ)2, for all
t ∈ [0, 1], the activation maps M (θ0(1−t)+θ1t) interpolate between activation
maps M (θ0) and M (θ1). The following Proposition gives an expression of acti-
vation maps as linear combination of trigonometric functions.

Proposition 19. The activation maps M (θ) verifies

∀θ ∈ R/πZ, M (θ) = M (θ0) cos (2(θ − θ0)) +M (θ1) sin (2(θ − θ0)) .

Proof. The proof follows simple arithmetic by computing Re(Zθ).

An interesting aspect of this model is that it provides a way to compute
orientation maps using a continuous sum over all orientations. First, we recast
the Definition 10 of orientation maps.

Definition 13 (Orientation Map). An orientation map O is defined by

O =

∫ π

0

M (θ) exp (2iθ) dθ.

Such Definition combined with Proposition 19 provides a way to compute
an orientation maps as a function of only two activation maps M (θ0) and M (θ0).
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Proposition 20. An orientation map O verifies

O =
1

2
Arg

(
π

2
cos(2θ1)M (θ1) − π cos(θ1) sin(θ1)M (θ2)

+ i

(
π cos(θ1) sin(θ1)M (θ1) +

π

2
cos(2θ1)M (θ2)

))

where Arg is the function that give the argument of a complex number in [0, 2π).

Proof. Plug the expression of M (θ) established in Proposition 19 into the Def-
inition 13 of an orientation map. Then, we use fact that
∫ π

0

cos(2(θ − θ0)) cos(2θ)dθ =

∫ π

0

sin(2(θ − θ0)) sin(2θ)dθ =
π

2
cos(2θ0) and

∫ π

0

cos(2(θ − θ0)) sin(2θ)dθ = −
∫ π

0

sin(2(θ − θ0)) cos(2θ)dθ = π cos(θ0) sin(θ0).

5.2 Validation on Dataset 2

First, we validate this model on Dataset D(2). To this purpose, we use the
activation maps (ωave.

y )y∈Y obtained using logistic regression (see Section 4.1.

Therefore, we use (M (θ0),M (θ1)) = (ωave.
0 , ωave.

1 ) where θ0 = 0◦ and θ1 = 45◦.
Then, we compute M θ for θ ∈ {90◦, 135◦} that we compare to (ωave.

2 , ωave.
3 ).

This comparison is shown in Figure 5.1. In the top row, activation maps and
orientation maps are consistent with the ones obtained in Figure 4.1. In the
bottom row, the differences with activation maps (ωave.

y )y∈Y are obviously equal
to zeros for y ∈ {0, 1} and stay low with respect to the range of the activation
maps for y ∈ {2, 3}. Finally, the differences between maps are low and reach
up to 10 ◦ in some areas. The high differences are saturated to 10 ◦ but
they appear only in some pixels around pinwheels or in noisy areas. Second,
we validate Proposition 20 in Figure 5.2 by comparing the maps computed
using Definition 10 and Proposition 20. Again the differences are low. In fact,
these differences corresponds very closely (difference is below 1 ◦) to the ones
obtained at bottom right of Figure 5.1.

5.3 Interpolation on Dataset 3

The initial goal of this model is to provide a way to interpolate between
activation maps. Therefore, we test such an interpolation on Dataset 3. Recall
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Figure 5.1: Top: activation maps obtained on dataset S(2) with
Definition 12 and the corresponding orientation map computed us-
ing Definition 10. We use M (θ0) = ω̂ave.

0 and M (θ1) = ω̂ave.
1 . Bottom:

the differences with experimental results |ω̂ave.
y −M (θy)| and the dif-

ferences between their corresponding orientation maps computed
using Equation 4.1. The difference is saturated at 10 degree in or-
der to highlight the small differences. Supplementary figure online.

Proposition 16 Definition 9 Difference
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Figure 5.2: Orientation maps obtained on dataset S(2) with
Proposition 20 (left), Definition 10 (center) and their difference
(right). The difference is saturated at 10 degree in order to high-
light the small differences.

that in this protocol the stimulus is rotated from 135◦ at middle stimulation
time. First, we compute the weight vectors ω̂ave.

y,t and we use them to obtain the

https://jonathanvacher.github.io/chapV-supp.html
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diagonal coefficients (Λy,y,t)y∈Y of the average confusion matrices Λt at each
time t ∈ T . Second, we model the activation maps using Proposition 19 by
M (y,θt) were for all all y ∈ Ỹ (defined in Section 4.3.2) and t ∈ T ,

θt = θy1[0,575](t∆t) + θy+31[700,1280](t∆t) + (θy + θy+3
t∆t − 575

125
)1[575,700](t∆t).

Figure 5.3 shows the comparison of the diagonal coefficients of the confusion
matrices. The modeled activation maps are able to predict the classes as good
as the learned weight vectors. Moreover, in Figure 5.4, we show the normalized
weight vectors ω̂ave.

y,t both with their contours (red) at 0.5 and the contours of

the modeled activation maps M (y,θt) (blue). The red contours are generally
inside the blue contours, see Figure 5.4(b)(c). The contours coincide for
Figure 5.4(a) whereas they differ slightly in Figure 5.4(d) (640 and 665 ms).

Main Conclusions

• We build a simple model of activation maps.

• The model successfully accounts for the data.

• The model supports the role of lateral connections in case of a non-
orthogonal rotation of the stimulus, see [14, 212]
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Figure 5.3: Plain lines: coefficients Λy,y,t of the average confusion
matrix Λt computed at each time t ∈ T on dataset S(3). Dotted
lines: the same coefficients except that we use the interpolated maps
M (θt) to compute the confusion matrices (see Equations 6 and 5.2).
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Figure 5.4: Dataset S(3) (orientation shift +135 ◦). Normalized
weight vectors ω̂ave.

y,t and scores µ̃ι,t (Left: blue scores. Right: red
scores. See Figure 4.13) for time indicated under each frame. The
red contours are the level set of the current normalized weight vec-
tors at 0.5. The blue contours are the level set of the interpolating
activation maps M (y,θt) at 0.5. (a) Label y = 0 corresponding to a
θ1 = 0 ◦ orientation. (b) Label y = 1 corresponding to a θ1 = 45 ◦

orientation. (c) Label y = 2 corresponding to a θ1 = 90 ◦ orienta-
tion. (d) Label y = 3 corresponding to a θ1 = 135 ◦ orientation.
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Supervised Classification For
Extracellular Recording

In this chapter, we first review the principles and processing of Extracellu-
lar Recording (ER). Then, we compare the results obtained using the different
algorithms introduced in Chapter IV on several datasets, including datasets
that were recorded under MC simulations. In particular, we show that the
signals recorded under oriented stimulations with a variable orientation con-
tents or a variable spatial frequency contents can be discriminated. Then, we
present spatially and temporally localized analysis methods. These analyses
reveal differences between the information contained in the spiking activity of
single neurons and that of a neural population. Finally, we build a simple
Linear/Non-linear Poisson model which enables us to reproduce the behaviour
of the recorded datasets.
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1 Introduction

In this chapter, we focus on data obtained with Extracellular Recordings
(ER). Before going into the details of how informative it is about brain func-
tions, we briefly recall some background about this method.

1.1 Principles of ER

The extracellular recording technique is the oldest way to measure neural
activity; it consists in inserting an electrode in brain tissue to measure cur-
rent variations. The path to electrophysiology started in the second half of
the 18th century, with Luigi Galvani’s experiment on frogs which lead him to
hypothesize an intrinsic “animal electricity” [148]. A century later, Santiago
Ramón y Cajal laid the foundation of neuron theory by describing the nervous
system as a network of polarized nerve cells in contact with each other at the
synapse level [77]. Another forty years went by before Edgar Adrian was able
to record the first electrical signal from nerve fibers using a Lippmann elec-
trometer [5]. The year 1940 marked the beginning of miniaturization when
Renshaw, Forbes and Morrison used microelectrodes in the cat’s hippocam-
pus [158]. Miniaturization led to major results in neuroscience thanks to in-
tracellular recording [117]. It allowed Hodgkin and Huxley to formalize the
electrical behavior of neurons by describing the famous equation named af-
ter them [84]. It also permitted Hubel and Wiesel to identify receptive fields
(see Section 1.1) of single neurons in the cat’s primary visual cortex [87]. In
the last fifty years, microelectrodes diversified in terms of sizes, numbers and
shapes, enabling researchers to record multiple neurons at the same time over
larger and deeper volumes of cortex [36, 47]. Figure 1.1 displays a sketch of
the laminar electrode used to collect the data analyzed in this work.

Figure 1.1: The laminar electrode used during ER experiment
at UNIC lab. It has 64 recording points staggered along a silicon
array. This Figure is extracted from technical documentation of
Neuronexus and edited by Yannick Passarelli.
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1.2 Processing of ER Data

Laminar electrodes are used to record up to a few dozens of neurons dis-
tributed in the different layers of the cortex or across the laminar plane (for
tangential penetrations). In extracellular recordings the signal is twofold: the
high-frequency component (400Hz to few thousands) which corresponds to
spikes of single neurons and is known as multiunit activity (MUA), and the
low-frequency component (cut off at about 300Hz which represents an aver-
aged activity of multiple neurons and is known as local field potential (LFP).
These raw signals can be treated directly, however, for MUA it is of a partic-
ular interest to associate the spikes to their corresponding neuron, especially
in order to study them in particular. This corresponds to the spikes sorting
problem, which is a multi-canal blind-deconvolution inverse problem, and can
be tackled using a variety of inverse problem sparse regularization methods,
see for instance [48, 118, 161] for a few relevant previous works. After per-
forming such a signal separation, the signal is known as Single Unit Activity
(SUA). At UNIC, they now use the toolbox developed by Rossant et al. [161]
called Klusta.

Understanding how information is encoded along the vertical and horizon-
tal connections is fundamental to explain the relation between different areas
of the cortex like, for instance, cortical columns. Indeed, many studies high-
light the importance of feedforward and feedback mechanisms for information
processing. For instance, Martinez et al. [119] compare orientation selectivity
of neurons across the different layers and show that orientation tuning curves
have common properties in the same layer but different ones across layers.
Later, Hirsch and Martinez [83] examine the micro-circuitry of the visual cor-
tical column in order to outline the connectivity between layers and offer a
better understanding of their role. Lamme et al. [109] review the role of the
feedforward, horizontal and feedback connections. They conclude that feedfor-
ward connections are central to the receptive field concept whereas horizontal
and feedback connections involve higher level tasks like perceptual organiza-
tion and attention. Another interesting paper of Lamme [108] suggests that the
blindsight phenomenon (the ability to respond to visual stimuli without con-
sciously perceiving them) occurring in some patients with lesions in V1 can be
caused by the absence of feedback to V1. Ferster and Miller [52] compare the
feedforward and feedback models and what they imply in the visual process-
ing. A feedback model can only encode a finite number of stimuli depending
on its number of connection whereas a feedforward model is more flexible and
encode different stimuli differently. Our study focuses on how information is
distributed in time and among a neural population. We mainly make use of
supervised learning to probe if neural responses contain information related to
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the Motion Cloud parameters (mainly bandwidths).

1.3 Previous Works: Machine Learning for ER

Electrophysiological data are often used to compute neurons’ receptive field
using reverse correlation techniques [98, 40]. Also known as Spike Triggered
Average (STA) and Spike Triggered Covariance (STC), these methods are well
documented [92] and extended beyond the hypothesis of Gaussian stimuli [168].
Moreover, they have worthy consistency and efficiency properties [143]. The
STA and STC are useful to identify the linear component in standard Linear-
Nonlinear Poisson (LNP) models used to mimic the spiking behavior of neu-
rons [172]. Although these methods are not considered as standard supervised
classification algorithms, they consist in averaging the values of the stimulus
presented at times before spikes. So, spikes are implicitly associated with their
stimulus (belonging to a similar stimulation class, e.g. with constant orienta-
tion). Important to mention, the work of Park [145] uses a Bayesian estimation
of receptive field that provides smooth results. In relation with Chapters II
and III, these works of Neri et al. [132, 134] makes use of reverse correlation
techniques in psychophysics to study detection and stereoscopic vision. Neri
and Levi [133] further compare neurons’ receptive field to humans’ perceptual
field and highlight their common features.

However, the receptive field is not a fixed characteristic of the neuron be-
cause it is to be stimulus dependent [55]. Variation of the estimated receptive
field as a function of the stimulation class is a crucial information. This ap-
proaches thus has a strong machine learning flavor. Even so, there exists few
papers that make use of standard supervised learning techniques. In partic-
ular, Hung et al. [90] use a kernel linear regression to classify the responses
of IT neurons to different stimuli and make stimulus predictions knowing the
neurons’ response. More recently Yamins et al. [215] use a SVM classifier to
classify the responses of IT neurons and make predictions about the stimulus.
They compare this performance to the ones obtained using the same classifier
over features that are computed from the stimuli using different models of the
visual cortex (V1, V2) and other computational models. They show that the
model based on Convolution Neural Networks (CNNs) is the only one that
closely follow the performances (across all experimental conditions) obtained
using the IT neurons’ response as features.

This review of the state of the art reveals that the usage of ML techniques
in the fields of ER is very limited. It is the purpose of this chapter to explicitly
and systematically propose ML-based solutions of the exploration of such ER
datasets.
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1.4 Contributions

1.4.1 Main Contributions

The first major contribution results from the use of MCs as stimuli. We find
that small neural populations (few dozens of neurons) contain enough infor-
mation to discriminate between homogeneously and heterogeneously oriented
stimuli. Such populations contain also enough information to discriminate be-
tween stimuli with narrow and broad spatial frequency bands (see Section 4).
The second major contribution is a methodology of temporal analysis of pre-
diction performances. We find that neural populations have, systematically,
better classification performances than any single neurons when stimulated by
MCs (see Section 5). However, when stimulated with natural movies, there
exists neurons that provide classification performances that are similar to the
entire population. The third major contribution is a simple Linear/Non-linear
Poisson (LNP) spiking neurons model that generate synthetic data (see Sec-
tion 6). When generated with MCs, the synthetic data provide results that
are similar to the one obtained on the experimental recordings. We provide
an online1 example of data synthesis using the proposed model and MCs.

1.4.2 Related Works

In order to accurately define the context in which spot this chapter we go
back to the most important references.

The papers of Hung [90] and Yamins [215] are the most related papers to
our work. They both make use of supervised classification in different ways
that we use together in this chapter. In Hung’s paper, they make an extensive
use of their classifier: they compare the performances obtained using different
combinations of the recorded signal (single unit activity, multi unit activity,
local field potential), different time bins, different times and different stimu-
lation conditions. Such an approach is similar to feature selection, this helps
understand where the information is concentrated in a population of neurons.
On the contrary in Yamins paper, they make a single use of the classifier.
However they build many models that are able to simulate data, by then using
the classifier on these synthetic data they obtain different classification perfor-
mances that are compared to the ones obtained with the real data. Such an
approach allows to discriminate between good an bad models and is therefore
another way to quantify their quality.

1http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/

lnp_spiking_neurons/

http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/lnp_spiking_neurons/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/lnp_spiking_neurons/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/lnp_spiking_neurons/
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Goris et al. [71] make use of MC-like stimuli with different orientation band-
width to tackle the question of tuning diversity in neurons. Once the diversity
is established they asked whether the observed diversity is an advantage to
represent local patches of natural images which appears to be true. Although
we are using the same kind of stimulations, our analysis is different as we are
checking if the recorded neural population contains information that allows for
the discrimination of the stimuli. By using another physiologically-based tex-
ture synthesis algorithm (see, [149]), Freeman et al. [57, 58] precise the role of
the V2 area. Their main finding is that V2 neurons are sensitive to the high-
order statistical correlations present in natural images. The works of Goris
and Freeman employ the most promising strategy to understand the visual
processing: they both use complexified artificial stimuli (mixture of drifting
gratings) and mimicked natural images (also called naturalistic textures) to
answer a precise scientific question. They subsequently test their finding over
natural images.

2 Material and Methods

2.1 Animal Preparation

The animal preparation follows closely the description given in Section 2.1
except for the craniotomy. It is smaller, a few millimeters squared and located
at anteroposterior coordinate (−2,−2) to allow for the electrode implantation
in A17.

2.2 Setup

One type of Neuronexus probe was used : 1 × 64, on shank 64 channels
(A1x64-Poly2-6mm-23s-160) The electrodes were lowered through cortex using
a micromanipulator (Luigs & Neumann). Silicon probes being quite large, in
order to avoid as much damage as possible of the tissue, advancement through
the brain was made very slowly and 1m at a time. Acquisition was made with
a Blackrock Cerebus system. Signal from the probes was amplified, filtered
and digitized by an amplifier then transmitted to a Neural Signal Processor
(NSP) via a optic-fiber. The amplifier filters the signals with a first order
highpass filter at 0.3 Hz and a third-order low-pass filter at 7.5 kHz. The
filtered neural signals from each electrode are digitized with 16-bit resolution
at 1 µV per bit with a sampling rate of 30000 kHz. The analog filtering of
the electrode signals allow both low frequency field potentials extracellular
spike signals to pass through. The neural signals are later separated into low
frequency (filtering between 1 − 250 Hz) and and spike signals (highpass at
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250 Hz) by digital filtering in the Neural Signal Processor (NSP). The NSP
does an online analysis and then transmits the processed data to a host PC
system via an Ethernet cable. On the host PC a homemade software, Elphy
(Gérard Sadoc, CNRS), was in communication with the Blackrock system in
order to save the acquired data.

2.3 Visual Stimulation

Data are collected under three different protocols described below. A pro-
tocol consists in presenting a number C ∈ N of stimuli variously parametrized.
This operation is then repeated a certain number R ∈ N of times. Figure 2.1
is illustrating the protocols used for datasets 1, 2 and 4 to 6. A LCD screen
(ASUS) with a resolution of 1920×1080 pixels and a refreshing rate of 120 Hz
was placed at 57 cm of the animal so that 1 cm on the screen is equal to one
visual degree. All visual stimuli were generated with Elphy, maximum and
background luminance were set at 40 cd cm−2 and 12 respectively.

Dataset 1 Stimuli were Motion Clouds with parameters z0 = 0.6 c/◦, BZ =
1.35, σV = 1

t?z0
with t? = 0.666 ms and drifting in a single direction for 1000 ms

at speed v0 = 2.5 c/s starting 500 ms after recording onset. Six orientations
were presented (θ0 = 0 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦ and 300 ◦) with five orientation
bandwidths (σΘ = 0.35, 0.79, 1.12, 1.58 and 2.24), totaling C = 30 stimulation
conditions. The stimuli presentation were pseudo-randomly interleaved and
were displayed monocularly.

Dataset 2 Stimuli were Motion Clouds with parameters z0 = 0.6 c/◦, BZ =
1.35, σV = 1

t?z0
with t? = 0.666 ms and drifting in a single direction for 1000 ms

at speed v0 = 2.5 c/s starting 500 ms after recording onset. Six orientations
were presented (θ0 = 0 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦, 300 ◦) with five orientation
bandwidths (σΘ = 0.79, 1.12, 2.74, 3.87 and 5.48), totaling C = 30 stimulation
conditions. The stimuli presentation were pseudo-randomly interleaved and
were displayed monocularly.

Dataset 3 Stimuli were Motion Clouds with parameters z0 = 0.6 c/◦, σΘ =
0.5, σV = 1

t?z0
with t? = 0.666 ms and drifting in a single direction for 1000 ms

at speed v0 = 2.5 c/s starting 500 ms after recording onset. Six orientations
were presented (θ0 = 0 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦ and 300 ◦) with six spatial
frequency bandwidths (BZ = 1.76, 2.38, 2.55, 2.77, 2.84, 2.9), totaling C =
36 stimulation conditions. The stimuli presentation were pseudo-randomly
interleaved and were displayed monocularly.
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Dataset 4 Stimuli were Motion Clouds with parameters z0 = 0.6 c/◦, σΘ =
0.5, σV = 1

t?z0
with t? = 0.666 ms and drifting in a single direction for 1000 ms

at speed v0 = 2.5 c/s starting 500 ms after recording onset. Six orientations
were presented (θ0 = 0 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦, 300 ◦) with six spatial
frequency bandwidths (BZ = 1.2, 1.84, 2.11, 2.31, 2.46 and 2.61), totaling C =
30 stimulation conditions. The stimuli presentation were pseudo-randomly
interleaved and were displayed monocularly.

Dataset 5 Stimuli were 10 different natural movies. The stimuli presentation
were pseudo-randomly interleaved and were displayed monocularly centered on
the approximate receptive fields center.

Dataset 6 Stimuli were 15 different natural movies with scrambled frame (ie
with removed temporal correlations). The stimuli presentation were pseudo-
randomly interleaved and were displayed monocularly centered on the approx-
imate receptive fields center.

2.4 Preprocessing

A signal (st)t∈T only consists of spiking activity i.e it is binary and discrete.
It is, therefore, not appropriate for the algorithms we use. Instead we compute
an approximate spike density (dt)t∈T by convolving the spike train against a
Gaussian kernel, for all time t ∈ T

dt =

∑
t′∈{−wf ,...,wf} exp

(
− t′2

2σ2
f

)
st+t′

∑
t′∈{−wf ,...,wf} exp

(
− t′2

2σ2
f

) ,

where σf is the width of the averaging window. An example of spike density
approximation is shown in Figure 2.1. When, the width of the averaging
window increases the density flatten around the average number of spike over
the entire window. We usually choose σf = 10 to be consistent with standard
averaging methods (see peristimulus time histogram for more information).

2.5 Recorded Datasets Organization

In this section, we consider both MUA and SUA. The MUA consists of
spiking activity recorded on 64 channels whereas the SUA consists of spiking
activity of individual neurons. In both cases we denote by Q = {1, . . . , Q} the
number of channels or neurons. Such a signal is recorded for every stimulation
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0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000

Figure 2.1: An example of the approximate spike density com-
putation for σf = 15, 50 and 100 (from left to right). Abscissa
indicates time in ms. The lines represents different repetitions of a
same condition recorded in dataset D(1) (see below).

conditions c ∈ C = {1, . . . , C} and repetition r ∈ R = {1, . . . , R}. Moreover,
we denote by T = {0, . . . , T} the set of time samples. Therefore, dataset
number k ∈ K = {1, . . . , 6} is therefore denoted

D(k) = (d
(k)
q,t,c,r)(q,t,c,r)∈Q×T ×C×R.

The same remarks hold for the formulation of a machine learning classification
problem, cross-validation and technical details, see Section 2.5.

3 Comparison of the Different Algorithms
In order to compare the different algorithms introduce in Chapter IV we

evaluate their prediction performances on each entire dataset, ie we consider
every stimulation parameter as a different label. For the natural movies, we
consider that each movie corresponds to a label. The contribution is twofold
because we provide a comparison different algorithms and in addition this
comparison is performed on innovative protocols. Indeed, to our knowledge
similar protocols to the ones used to obtain datasets D(1) and D(2) are used
only in [71]. We do not know any study that tests various spatial frequency
bandwidths corresponding to protocols used to collect datasets D(3) and D(4).

3.1 Channels and Time Samples as Feature Space

Design of X and Y We choose to concatenate channel and time spaces as
a feature space X = RQ×T ie the entire recorded signal space. The number of
classes varies from one dataset to another. But, in each case we set Y = C×R.
Datasets D(1) and D(2) have 30 classes. Datasets D(3) and D(4) have 36 classes.
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Finally dataset D(5) has 10 classes and dataset D(6) has 15. Therefore,

∀i = (r, c) ∈, xi = dk.,.,c,r ∈ X ,

where dk.,.,c,r is defined in (2.5). Table 3.1 summarizes the relevant experimental
parameters.

∆t (ms) ton∆t toff∆t T∆t C R

D(1) 1 500 1500 2000 30 20

D(2) 1 500 1500 2000 30 15

D(3) 1 500 1500 2000 36 10

D(4) 1 500 1500 2000 36 20

D(5) 1 1000 11000 12000 10 15

D(6) 1 1000 11000 12000 15 10

Table 3.1: Experimental parameters of the different datasets.

Results Figure 3.1 summarizes the results by showing the average score over
folds µι and their standard deviation σι (both defined in Equation (5.1)). For
each dataset, LC and NC shows the best scores with an small advantage for
LC. The low standard deviations ensure that scores are at least 3σι above
chance level (ie there are more than 99.7% chance that the score is above
chance). The score of LDA varies from one dataset to another.

• Datasets D(1) and D(4): the score is at a reasonable level similarly to LC
and NC with an smaller standard deviation.

• Datasets D(3), D(5) and D(6): the score is around chance level.

• Dataset D(2): although the score is medium the standard deviation is
extremely large.

As for the VSDi datasets with no dimensionality reduction, GNB and QDA
fail to classify the data except, surprisingly, for GNB on dataset D(5). The
reasons that explain such a poor performance are the same as for the VSDi
signal ie features independence assumption and high dimension of the feature
space. These are detailed in Section 4.1. In order to check the structure of
predictions, we show in Figure 3.2 the confusion matrices Λ (defined in Equa-
tion (5.2)) and the distance dp (defined in Equation (9)) obtained for each
algorithm. We associate to each couple of stimulation parameters (θ0, σΘ) (or
(θ0, BZ)) the label y corresponding to its rank in the increasing lexicographical
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Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6
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Figure 3.1: Classification performances of the different algorithms
on the 6 datasets. QDA: Quadratic Discriminant Analysis. LDA:
Linear Discriminant Analysis. GNB: Gaussian Naive Bayes. NC:
Nearest Centroid. LC: Logistic Classification.

order. For dataset D(1) (Figure 3.2(a)), there is no apparent bias using the
QDA, the classification is bad. The GNB tends to predict any label to be
between 10 and 14 corresponding to a stimulation with orientation θ0 = 120 ◦.
The LDA, NC and LC methods show good results with the expected diag-
onal block structure reflecting the correct predictions of orientations. Inside
each block, the predictions are concentrated around the diagonal. Therefore,
if bandwidths are not well predicted they are in fact mixed up with the neigh-
boring bandwidths.

• QDA and GNB: the distances dp are around 0.5 meaning that stimula-
tion parameters are on average at half the maximum possible distance
between labels (uniform matrix corresponds to dp = 0.52).

• LDA, NC and LC: the distances dp are between 0.17 and 0.20 which
reinforces the fact that bandwidths are mixed up with their neighbor-
ing bandwidths (uniform blocks along the diagonal corresponds to dp =
0.29).

For dataset D(3) (Figure 3.2(b)), there is no apparent bias using QDA and
LDA. These two methods performs badly with a distance dp = 0.47 (close
to the distance of uniform matrix). The GNB method shows strong bias in
the prediction as the visible columns indicates. Its performances are similar
to LDA, however the distance dp = 0.43 is a little smaller showing that the
errors made are closest to real labels than the ones made by LDA and QDA.
Finally, LC and NC show good prediction scores with the expected diagonal
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block structure indicating the correct predictions of orientation. Again, the
distances dp around 0.15 show that predicted spatial frequency bandwidths
are close to the true spatial frequency bandwidths.

Partial Conclusions of Section 3.1

• LC and NC perform best.

• LDA results are variable.

• GNB and QDA perform badly showing the existence of significant
spatial and temporal correlations.

• GNB shows significant prediction bias.

3.2 Dimension Reduction Using PCA

In order to increase the prediction performances of QDA, LDA and GNB,
we perform a dimension reduction method using PCA. Following Section 3.2,
we test npca ∈ Epca = {5, 10, 20, 40, 80, 150} and compute the associated aver-
age score over the folds µι(npca) (defined in Equation (5.1)). Then, we choose
the number of PCA components npca that provide the highest score.

Results Contrary to VSDi data, the chosen number of PCA components
npca depends highly on the algorithm we have used. As the right hand side
of Figure 3.3 shows, QDA performs best with npca = 10. The GNB and LDA
methods perform best using npca = 40. The NC method performs best with
npca = 80. Finally, the LC methods performs best using npca = 150. Gen-
erally, the dimension reduction method improves the prediction performances
of all algorithms. As expected, the QDA and GNB methods significantly per-
form above the chance level. For each dataset excepted for dataset D(3), the
hierarchy of prediction performances is preserved. From the highest to the
worst performances we have: LDA > LC > NC > GNB > QDA. Again, for
each dataset, the error bar are small ensuring that each performances is at
least 2σι above chance. The structure of prediction is shown in Figure 3.5.
For dataset D(1) (Figure 3.5(a)), the diagonal block structure is visible for
each algorithm. Small bias is observed in GNB in which we observe residual
columns (column 10 for example). The QDA method correctly predicts ori-
entations but sometimes mixes up directions as indicate the blocks above and
under the diagonal. Not surprisingly, the QDA performs best with a small
number of PCA components because a small feature dimension increases the
class covariance estimates. For dataset D(3) (Figure 3.5(b)), the diagonal
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Figure 3.2: Confusion matrices Λ and distance dp obtained for
each algorithm for dataset D(1) (a) and D(3) (b). QDA: Quadratic
Discriminant Analysis. LDA: Linear Discriminant Analysis. GNB:
Gaussian Naive Bayes. NC: Nearest Centroid. LC: Logistic Classi-
fication.

block structure is again visible for each algorithm. No bias is observed in GNB
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Figure 3.3: Dataset D(1). Left: the average score µι(npca). Right:
the normalized average score µι(npca).
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Figure 3.4: Classification performances of the different algorithms
on the 6 datasets. QDA: Quadratic Discriminant Analysis. LDA:
Linear Discriminant Analysis. GNB: Gaussian Naive Bayes. NC:
Nearest Centroid. LC: Logistic Classification.

and the QDA method still mixes up directions as indicate the blocks above
and under the diagonal. Again, the QDA performs best with a small number
of PCA components. Finally, in both datasets the distances dp are reduced
showing a improvement of predictions.

Motion Clouds vs Natural Movies Remarkably, the prediction perfor-
mances for the datasets involving natural movies stimulation (D(5), D(6)) are
higher than for other datasets involving motion clouds. Such a difference oc-
curs for at least two reasons. First, the motion clouds are random stimuli.
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In each repetition, although the stimuli have the same parameters they are
generated with different seeds ie the values of pixels are different. Second,
the tested motion clouds are sampled along lines or meshes in the space of
parameters which make them being close to each other in quantifiable way
(for example one can define the distance between two motion clouds as being
the distance between their parameters). Considering natural movies is slightly
different, there is no small dimension parametric model of natural movies and
their diversity is high. Understanding the good prediction levels obtained on
natural images would require to properly evaluate the differences between the
natural movies in a way that reflects the processing of V1 neurons. As a per-
spective for future works, the importance of the stochastic stimulation (MC)
in the prediction results could be evaluated by running a control experiment
in which the motion clouds are generated with same seed.

Main Conclusions of Section 3

• The LC and NC methods perform best without dimension reduction.

• The LDA performs better than LC and NC after dimension reduction.

• The GNB and QDA perform badly with no dimension reduction show-
ing the existence of significant spatial and temporal correlations.

• There are important differences in the prediction performances of mo-
tion clouds and natural movies.
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Figure 3.5: Confusion matrices Λ and distance dp (defined in
9) obtained for each algorithm for dataset D(1) (a) and D(3) (b).
QDA: Quadratic Discriminant Analysis. LDA: Linear Discriminant
Analysis. GNB: Gaussian Naive Bayes. NC: Nearest Centroid. LC:
Logistic Classification.
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4 Bandwidths Encoded in Neurons
The classification tasks studied in the previous section does not allow to

clearly evaluate the prediction performances over the bandwidths. In order
to circumvent this issue, we reduce the confusion matrices by summing the
coefficients that correspond to labels associated with a common orientation or
a common bandwidth. Thus, we can check if one of the two tested parameters
is better predicted than the other. The most accurate way to perform this
evaluation is to rerun the algorithm on datasets in which we only label one
of two tested parameters. However, collapsing the confusion matrix is much
simple and does not call into question the conclusions.

The reduced confusion matrices presented here are performed on SUA after
dimension reduction ie we are considering the spiking activity of single neurons
instead of the spiking activity recorded by electrodes. In each case we choose
the algorithm that shows the best prediction performances.

4.1 Collapsing a Confusion Matrix

First, let us define precisely how we collapse a confusion matrix. Here,
we assume that Y = C0 × C1. For instance, in dataset D(2), we have C0 =
{0, 60, 120, 180, 240, 300} and C1 = {0.79, 1.12, 2.74, 3.87, 5.48}, see the defini-
ton of protocols in Section 2.3. The collapsed version of the average confusion
matrix Λ is defined as it follows.

Definition 14 (Collapsed Confusion Matrix). Let Y = C0 × C1 and Λ =
(λy,y′)(y,y′)∈Y2 an average confusion matrix. For i ∈ Z/2Z, the collapsed con-

fusion matrix over Ci is Λ(i) = (λ
(i)
c,c′)(c,c′)∈C2

i
where

∀(c, c′) ∈ C2
i , λ

(i)
c,c′ =

1

|Ci+1|2
∑

(u,v)∈C2
i+1

λ(c,u),(c′,v).

In the following sections, we collapse the confusions matrices on C0 (tested
orientations) and C1 (tested bandwidths) for datasets D(2) and D(3).

4.2 Orientation Bandwidths

The confusion matrix shown in Figure 4.1 reflects the good prediction per-
formances obtained with SUA (see a definition of SUA in Section 1.2). Despite
the fact that we sometimes observe a decrease in the performances compared
to MUA, this indicates that the SUA contains approximately as much infor-
mation as MUA. The observed differences can be of different origins. The
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MUA can quantitatively dominate the SUA or the spike sorting step can be
hard to perform. The reduced confusion matrices in the center (Λ(0)) and on
the right (Λ(1)) demonstrate that orientations are much better predicted than
orientation bandwidths. One interesting aspect is the two-blocks structure of
the reduced confusion matrix corresponding to bandwidths (right) obtained on
dataset D(2). It reflects the gap presents in the bandwidth parameter (σΘ =
0.79, 1.12 | 2.74, 3.87 and 5.48). Therefore, it is likely that the performances
must increase by testing a coarser set of bandwidths.
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Figure 4.1: Dataset D(2). Confusion matrices Λ (left) and its
reduction to orientation Λ(0) (center) and to orientation bandwidths
Λ(1) (right).

4.3 Spatial Frequency Bandwidths

Again, the Figure 4.2 demonstrates the good prediction performances ob-
tained with SUA. The reduced confusion matrices in the center (Λ(0)) and on
the right (Λ(1)) demonstrate that orientation are much better predicted than
spatial frequency bandwidths. Moreover, the reduced confusion matrix cor-
responding to spatial bandwidths has three-blocks structure that reflects the
double gap in the tested parameters (BZ = 1.76 | 2.38, 2.55 | 2.77, 2.84 and
2.9). Thus, a coarser set of spatial frequency bandwidths must provide better
prediction performances.

Main Conclusions of Section 4

• Neurons of V1 are sensitive to both spatial frequency and orientation
bandwidths (reinforcing the claims of Goris et al [71]).

• These preliminary experiments must be refined by wisely choosing the
bandwidths to be tested.
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Figure 4.2: Dataset D(3). Confusion matrices Λ (left) and its re-
duction to orientation Λ(0) (center) and to spatial frequency band-
widths Λ(1) (right).

5 The Temporal Dynamic of Predictions
The previous Section establishes that the recorded signals contain stimulus-

related information. Now, we are going to inspect where and when this infor-
mation is located. By “where” we mean in which neurons the information is
located.

5.1 Temporal Localization Method

In order to evaluate the prediction performances of individual neurons we
simply set to zeros the values of other neurons and then we make the predic-
tions. The temporal analysis is more involved and we restrict the analysis to
the use of LC.

Sliding Window First, we use a Gaussian sliding window

∀t′ ∈ T , ht(t
′) = exp

(
−||t

′ − t||2
2σ2

h

)

where σh is the window size. The window “localizes” the influence of the
weight vector around each time t. We use these windowed weight vectors to
make predictions. The windowing is performed with null conditions at the
border of the weight vectors i.e. ∀t′ ∈ T , gt(t′) = 0 if and only if t′ − t /∈ T .
The probabilities of logistic classification defined in Equation (4.1) is therefore
modified in order to obtained the following localized predictor centered at pixel
t ∈ T ,

PY |X,θ,t(y|x) =
e〈x, htωy〉∑

y′∈Y e
〈x, htωy′ 〉

.
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This probability is then plugged in Equation (2.3) to make the prediction.
Then, we compute an average score µι,t for each time sample t. This first
approach allows to localize information in time.

Growing Window Second, we use a window that linearly grows from t = t0
to t = T ′. In this setting, the probabilities of logistic classification become

PY |X,θ,<t(y|x) =
e〈x,1tωy〉∑

y′∈Y e
〈x,1tωy′ 〉

.

where ∀t′ 6 t,1t(t
′) = 1 and ∀t′ > t,1t(t

′) = 0. Then, it is possible to compute
an average score µι,<t for each time window [0, t]. This second approach allows
to evaluate how the information is building up along time.

5.2 Results on Motion Clouds

The results of the local analysis are shown in Figure 5.1 with σh = 10,
t0 = 0 ms and T ′ = 1500 ms. We do not observe any particular differences
between datasets D(2) and D(3). First, on the left, we remark that despite the
small value of σh, the prediction performances of the population often reach
more than 10% whereas they stay below 7% for single neurons. This indicates
that population coding is efficient at a small time scale. Another interesting
point is the stationary behavior of predictions during stimulation that must be
related to the stationary stimulus we are using. On the right, we observe that
prediction performances increase faster and higher in the population than in
any single neurons. Moreover, there are important differences between neurons:
in some of them prediction performances are growing up whereas in some others
they stay close to the chance level.

5.3 Results on Natural Movies

We perform the same analysis on datasets D(5) and D(6) with σh = 10,
t0 = 500 ms and T ′ = 1500 ms, see Figure 5.2. First, on the left, we ob-
serve in Figures (a) and (b) that the population provides better prediction
performances locally in time. Population coding is efficient at a small time
scale. The dynamic of prediction is not stationary as for the natural stim-
ulation (even if the frames are randomly permuted (b)). Some time local
events in the movie can sometime provide more information. We do not draw
any conclusion about the differences in the stimulation (randomized frames vs
standard movies) which requires more experiments. Second, on the right, we
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Figure 5.1: Left: the scores µι,t for all t ∈ T . Right: the scores
µι,<t for all t ∈ {0, . . . , toff∆t}. The red line represents the chance
level. (a) Dataset D(2). (b) Dataset D(3).

observe that, in both cases, one neuron encodes as much information as the
entire population which reveals that the population signal is redundant. This
result must be related to the concepts of sparsity and redundancy reduction,
however we do not expand on this topic as it requires further analysis. We
refer to the following papers for more information on these topics [139, 201, 78,
10, 11]. Finally, we observe, in Figure (a) right, that the population prediction
performances do not increase linearly after the stimulus onset. The increase
is slow until 1000 ms and then it is faster. The fast increase occurs while the
prediction performances obtained with one single neuron is increasing. This
effect could be explained by the similarity of the ten movies during their first
500 ms at their center. However, this is unlikely after looking briefly at the
movies. This effect requires a precise analysis of the presented movies to be
understood.
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Figure 5.2: Left: the scores µι,t for all t ∈ T . Right: the scores
µι,<t for all t ∈ {0, . . . , toff∆t}. The red line represents the chance
level. (a) Dataset D(5) (b) Dataset D(6).

Main Conclusions of Section 5

• For MC stimulations, prediction performances are stationary over time
and population predicts faster and better than any single neurons.

• For natural movie stimulations, prediction performances are not sta-
tionary and one single neuron shows prediction performances similar
to the entire population.

6 Comparison with a Simple V1 model

Although the previous analysis are informative, they do not identify which
cortical mechanisms are involved. To this purpose, it is important to build
generative models of data and to conduct similar analysis. We refer to Sec-
tion 1.4.1 for a discussion about such forward models. In the following, we
use a simple Linear/Non-linear Poisson model [172] (LNP) to simulate a small
population of independent neurons. The simple assumption made on the pop-
ulation allow to partly reproduce the result of our previous analysis.
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6.1 Linear/Non-linear Model

The LNP model [172] is the most simple spiking neuron model. It is able
to reproduce the behavior of simple cells of V1 with oriented receptive fields of
different scales. We assimilate a neuron i to its receptive field fθi,Di,ai which,
following [99], we model using a Gabor oriented filter

∀x ∈ ΩN , fgi,θi,Di,ai(x) = gi exp

(
−1

2
(Rθix)TDi(Rθix)

)
cos (2πai〈Rθix, e〉)

where e = (1, 0) and Rθ is the rotation of angle θ. The angle θi represents
the orientation of the receptive field, the matrix Di controls its spatial aspect,
the real number ai is the spatial frequency and gi is a gain. The set ΩN =
{−N

2
, . . . , N

2
− 1}2 corresponds to the pixel positions. When stimulated with

an image ft at time t ∈ T the firing activity Ri of neuron i follows a Poisson
law of parameter λi,t = r+ max (0, 〈fgi,θi,Di,ai(ΩN), ft〉) where r is the residual
spiking activity. Therefore the probability that ri spikes occur between t and
t+ ∆t is

∀ri ∈ N, PRi|Ft(ri|ft) = λrii,t∆t
exp (−λi,t∆t)

ri!
. (6.1)

In order to simulate data, we choose to reproduce the protocols presented
in Section 2.3 that involve motion clouds.

Stimulation 1 First, we generate motion clouds with parameters z0 =
0.6 c/◦, BZ = 1.0, σV = 1

t?z0
with t? = 0.3 ms and drifting in a single di-

rection for 1000 ms at speed v0 = 2.5 c/s. Six orientations were used (θ0 =
0 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦ and 300 ◦) with five orientation bandwidths (σΘ =
0.35, 0.79, 1.12, 1.58 and 2.24), totaling C = 30 stimulation conditions.

Stimulation 2 Second, we therefore generate motion clouds with param-
eters z0 = 0.6 c/◦, σΘ = 1.0, σV = 1

t?z0
with t? = 0.3 ms and drifting in a

single direction for 1000 ms at speed v0 = 2.5 c/s. Six orientations were used
(θ0 = 0 ◦, 60 ◦, 120 ◦, 180 ◦, 240 ◦ and 300 ◦) with six spatial frequency band-
widths (BZ = 1.2, 1.84, 2.11, 2.31, 2.46 and 2.61), totaling C = 30 stimulation
conditions.

In both cases, we use a set of 8 neurons with receptive field fgi,θi,Di,ai where
for all i ∈ {1, . . . , 8},

gi = 0.005, ai = z0, θi ∈
{

0,
π

4
,
π

2
,
3π

4

}

and Di ∈
{(

0.1N 0
0 0.1N

)
,

(
0.2N 0

0 0.2N

)}
with N = 128.
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The receptive fields of the 8 neurons are shown in Figure 6.1. We generate
spikes according to Equation (6.1). For t ∈ {0, δt, . . . , T ′δt}, we consider that
at each time t′ ∈ {t, t+∆t, . . . , t+δt} spikes occur with probability PRi|Ft(ri|ft).
We use T ′ = 200 ie a frame refresh rate of 100 Hz and δt = 10∆t = 10 ms ie
a recording at 1000 Hz. We set the residual spiking activity r = 0.015. An
example of three simulated neurons is shown in Figure 6.2.

Figure 6.1: The receptive fields of the 8 neurons used for data
simulation.

0 400 800 1200 1600 2000 0 400 800 1200 1600 2000 0 400 800 1200 1600 2000

Figure 6.2: Example of 3 simulated neurons. Each column cor-
responds to a different neuron and each line corresponds the 10
different repetitions of a single condition. The red bars are the
individual spikes. The blue line represents the spike density com-
putation defined in Section 2.4.
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6.2 Results of Supervised Classification

We conduct the same analysis as in Section 4 and 5.

6.2.1 Orientation Bandwidths Manipulation

The first simulated dataset reproduces the protocols used for datasets D(1)

and D(2). The classification performances obtained are similar to the ones
obtained on the real datasets. In Figure 6.3, the confusion matrix has the
diagonal block structure. Moreover, the prediction performances are higher
on the orientations than on the orientation bandwidths. The main difference
comes from the miss prediction of directions. However, this behavior is ex-
pected because our model only considers spatial receptive fields and discards
its temporal component which makes possible the discrimination of directions.
Concerning the temporal aspects of prediction performances (see Figure 6.4),
the results are again very similar to the ones obtained on real data. We observe
that population shows better prediction performances than any single neuron.
The prediction performances are also stable over time. We conclude that such
a simple V1 model is able to explain the results we observe in the recorded
neurons.
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Figure 6.3: Simulated dataset 1. Confusion matrices Λ (left) and
its reduction to orientation (center) and to orientation bandwidths
(right).

6.2.2 Spatial Frequency Bandwidths Manipulation

The second simulated dataset reproduces the protocoles used for datasets
D(3) and D(4). Again, we observe similar performances as obtained on the real
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Figure 6.4: Simulated dataset 1. Left: the scores µι,t for all
t ∈ T . Right: the scores µι,<t for all t ∈ {0, . . . , toff∆t}. The red
line represents the chance level.

datasets. In Figure 6.3, the confusion matrix has the diagonal block structure
and the prediction performances are higher on the orientations than on the
spatial frequency bandwidths. Obviously, we also observe the miss prediction
of direction. The reduced confusion matrix to spatial frequency bandwidths
has a two blocks structure: the first bandwidth is very well discriminated from
the others. This is probably due to the choice of the neuron spatial aspect
parameters Di. Concerning the temporal aspects of prediction performances
(see Figure 6.6), the results are again very similar. The population shows better
prediction performances than any single neuron. Finally, we also conclude that
the simple model we have build is able to explain the observed results on these
protocols.
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Figure 6.5: Simulated dataset 2. Confusion matrices Λ (left)
and its reduction to orientation (center) and to spatial frequency
bandwidths (right).
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Figure 6.6: Simulated dataset 2. Left: the scores µι,t for all
t ∈ T . Right: the scores µι,<t for all t ∈ {0, . . . , toff∆t}. The red
line represents the chance level.



Conclusion and Perspectives

1 Neurosciences: Mathematics and

Experiments
After my mathematical curriculum, starting a PhD on such a multidisci-

plinary topic was a real challenge, both scientifically and personally. Along
this manuscript, we propose several contributions to texture models, neuro-
sciences and psychophysics that we will not recap here. Instead, we prefer to
insist on three main aspects:

• dynamic, stochastic, yet parametric, natural movie models;

• the “Bayesian brain” hypothesis;

• the relevancy of supervised learning for physiological data analysis.

Developing natural movie models for experimental neurosciences is funda-
mental, as they must be realistic, stochastic and well controlled. However, we
are far from having a good and efficient model of natural movies that verifies
these three assumptions (see Section 2 of the introduction). At the moment,
we are able to capture some relevant properties of natural movies like tex-
ture, geometry and motion. We have focused here our attention on a dynamic
texture model by taking into account only a small number of parameters. In-
deed, parameters need to be biologically relevant to our current understanding
of brain functions and in small number to be easily manipulable. We subse-
quently use these stimuli both in psychophysics and electrophysiology where
we get interesting results. While the obtained results are encouraging, it is thus
clearly important to use more involved dynamic texture models. In particular,
non-Gaussian models should allow to design generative models of geometry
and of complex motion.

Our approach to psychophysics is purely Bayesian. This framework offers a
nice way to interpret psychophysical bias in a mathematically and statistically
sound way. Our contribution in this direction is mostly methodological, and we
believe that the notion of ”inverse Bayesian inference” offers a nice framework
for further mathematical and statistical exploitation. It is however clear that
the Bayesian brain hypothesis is questionable, and most importantly, it does
not shed light on the actual neural implementation of the observed phenomena.
In particular, it requires further physiological investigations.

We choose to use supervised learning to analyze our different physiological
datasets. The first reason is that it fits the collected data labeled by their
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stimulation conditions perfectly. The second reason is that it is able to answer
the standard question that goes with this kind of protocols: does the recorded
signal contains stimulus related information ? Finally, supervised learning ap-
proaches usually perform better at detecting relevant features in noisy data
than standard averaging methods. Therefore, we strongly encourage neuro-
scientists to use these machine learning based algorithm to analyze data by
each time formalizing a proper classification task associated to an experimental
acquisition campaign.

2 Perspectives: Toward a Unified Bayesian

Model of Vision
Bayesian probability is a powerful tool to model information processing

(Chapters II and III). In perceptual neuroscience, the brain is often viewed as
an information processing machine [38]. In this context, the “Bayesian brain”
hypothesis (Chapter II and reviews [103, 60]) emerges naturally: sensory infor-
mation builds up in the brain as a likelihood that is combined to an internal
prior in order to detect, discriminate, take decisions, etc. Confronting such
an hypothesis to experimental data is still a challenge, especially in neuro-
physiology. The Bayesian inference theory is rich and applies in many fields
that involve data analysis. However, when applied to perceptual neuroscience,
the approaches are disparate because they highly depend on the experimen-
tal techniques used (electrophysiology, psychophysics, imaging, Chapters III, V
and VI). To extend the methology developed in my dissertation, we must tackle
the question of unifying the Bayesian brain models of vision to address both
electrophysiological and psychophysical data. Such a project will help us gain
a better understanding of what neural computations are. In addition, it will
provide a complete Bayesian model that implies systematic characterization of
neural responses through generative models of textures and images.

2.1 Related works

Ideal Bayesian Observer Model Recent advances in the field of Bayesian
modeling ([194, 184, 183, 96] and Chapter III) have justified the outcome and
bias observed in psychophysical studies of vision. In order to explain how
the brain processes sensory information, the Bayesian model assumes that
the brain performs some abstract measurements interpreted as a likelihood.
These measurements are subsequently biased by an internal prior that is able
to explain observed sensory bias, see Figure 2.1. However, these psychophysics
experiments are rarely combined to their neurophysiological counterparts, as
explained in [103]. In particular, our experimental works in psychophysics
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(Chapter III) and electrophysiology (Chapter V and VI) have been conducted
separately. In this context, such a model can be perceived by experimentalists
as a mathematical and abstract black box.

sensory
information

estimation
decision

discrimination
detection

likelihood × prior

Figure 2.1: The basic principle of a Bayesian observer.

Likelihood Functions Implemented by Neural Populations In elec-
trophysiology, work from the Movshon laboratory at NYU has focused on the
computation made by neural populations (see Section III.3.1) the main claim
is that neurons implement likelihood functions through the combinations of
their tuning curve and stimulus responses [94, 72]. The work of Ma et al. [111]
has the same approach. In short, a stimulus s elicits a number of spikes mi

in neuron i which has a characteristic response function fi called a tuning
curve. In the case of Poisson spiking neurons, the number of spikes mi is
generated from the Poisson law PMi|S of parameter fi(s). The combination of
the different neurons results in the computation of a likelihood function, see
Figure 2.2. Future works must focus on two essential components: the ques-
tion of the prior and that of the stimulus complexity (high dimensional movie
stimulations) in order to improve the limited connections between Chapter II
and Chapters III/VI.
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Figure 2.2: Neural implementation of likelihood computations.
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Priors Encoded in the Heterogeneity of Neural Populations The re-
cent work of Ganguli and Simoncelli [66] provides a framework that tackles
in a mostly theoretical way the problem of how a prior is encoded in neural
populations. In this work, the neurons implement a likelihood function. In
addition, they assume that the tuning curves of neurons are distributed ac-
cording to a certain law of density d, see Figure 2.3. By maximizing a lower
bound of the mutual information between stimulus s and the measurements
of neurons m = (m1, . . . ,mn), they show that the prior (ie the density of s)
is equal to the “tuning curve density” d (see [66] for details). Yet, this result
does not take into account the complexity of the stimulus and reduces neurons
to their tuning curves. However, it offers a way to tackle the physiological
relevance of the bi-variate prior used in Chapter III.

Stimulus (s)

F
ir

in
g

ra
te

(m
)

Homogeneous Density of Tuning Curves

Stimulus (s)

Heterogeneous Density of Tuning Curves
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d : tuning curves density

D(s) =

∫ s

−∞
d(s′)ds′

Figure 2.3: Density of tuning curves.

2.2 Future Works

In my thesis contributions and in this related work, I identify three clear
avenues for improvements. First, the lack of neurophysiological experiments
that test the “Bayesian brain” hypothesis. Second, the simplifying assumption
on the stimulus that discards its complexity ie the lack of connection between
the Bayesian model (Chapter II) and the Motion Cloud model (Chapter I)..
Third, following the simple stimulus, neurons are reduced to uni-variate tun-
ing curves. Extend the neuron representation should allow to question the
physiological relevance of our bi-variate prior III. Let us start by a natural
improvement of the MC model that we mention in Section I.5.

Real-Time Stimulation The sPDE formulation of MC allows for real-time
stimulation (Chapter I.3). However the spatial stationary covariance σW does
not depend on time. Such an extension appears naturally and one can imagine
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designing stimuli parametrized by trajectories instead of constant values. Yet,
this extension has some drawbacks. In particular the parameters of the solu-
tion are not equal to the input parameters but follow them with some delay.
Some theoretical work must conducted to properly handle this delay. Then,
it will possible to control the parameters with respect to neural responses
using Bayesian prediction models (for instance, by seeking to maximize the
responses).

Take Back the Complexity of Visual Stimuli The class of models to
be developed must assume an underlying generative model of images, see Fig-
ure 2.4. An image i is generated with probability distribution PI|S parametrized
by s (for instance speed, spatial frequency, orientation). When presented to an
ideal Bayesian observer, it elicits measurements of neurons m = (m1, . . . ,mn).
Typically mk is the spike counts of neuron k. Finally, the estimation ŝ is
computed from the combination of the measurements’ distribution PMk|S and
of an internal prior PŜ (see Section II.2). By requiring a generative model of

i ∼ PI|S mk ∼ PMk|I ŝ ∼ PŜ|Mk

likelihood

prior
PŜ = d

s ∼ PS

PMk|S =
∫
I PMk|I(mk|i)PI|S(i|s)di

Figure 2.4: The ideal Bayesian observer model that takes into
account the stimulus complexity.

measurements knowing the stimulus, such models are able to take back into
account part of its complexity. One consequence is that a Poisson spiking
neuron is modeled by the probability distribution PMk|I (instead of PMk|S, see
Figure 2.2) which depends on the image i. Instead of being parametrized by
the neuron’s tuning curve, the Poisson law is parametrized by the neuron’s
receptive field1. The goal is to refine the results of Ganguli [66] in a more
general context where the concept of “tuning curve density” is replaced by
an equivalent concept of “receptive field density”. For instance, the Bayesian
estimation perfomred by Park and Pillow [145] can be adopted: they use den-
sities for the parameters of receptive fields. In parallel, such models allow to
run simulations that are essential to evaluate their strengths and weaknesses.

1For a neuron: the region of the visual field in which a stimulus modifies its firing rate.
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A Bridge Between Electrophysiology and Psychophysics Using this
framework to explain effects observed in psychophysics (eg the effect of spatial
frequency/contrast over speed perception (see Chapter III)) provides hypoth-
esis about the “receptive fields density” of the neural population observable
using electrophysiology. In the same way, electrophysiology enables a charac-
terization of the neural population by its “receptive fields density”. Therefore,
it provides hypothesis about potential effects that could be observed in psy-
chophysics. Finally, electrophysiology and psychophysics become unified in a
common framework which is not done in this dissertation. The goal is to run
experiments both in psychophysics and electrophysiology using similar stimuli
generated from a common generative model. Such stimuli has shown useful
both in electrophysiology and psychophysics [71, 194]. The collected data will
enable the comparison between a theoretical “receptive fields density” that
explains the psychophysical effect and the empirical “receptive field density”
measured using electrophysiology. We can therefore answer the question of the
relevance of our bi-variate prior (see Chapter III).

Can We Fool the Brain Through Adaptation Mechanisms ? In the
model developed above and implicitely assumed along this manuscript (see
Section II.3.1 and VI.6), neurons are rigid units that combine each other to
compute a likelihood that is biased by a “receptive field density”. However,
neurons are known to adapt their receptive field to the statistics of sensory
inputs [55]. In this context, the “receptive field density” is not fixed anymore
and thus is the Bayesian prior. Therefore, by forcing short-term adaptation
mechanisms one can modify the internal prior of an observer that can be mea-
sured subsequently using psychophysics or electrophysiology. Inspired by [104],
the goal is to run experiments both in psychophysics and electrophysiology in
unified protocols. The protocols must involve stimulation known to provoke
visual illusions (eg motion after effect) followed by a classical stimulation. Such
a protocol allows to study the effects of induced adaptation on the classical
stimulus perception and whether or not it affects the observer prior.
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