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A common practice to account for psychophysical biases in vision is to
frame them as consequences of a dynamic process relying on optimal in-
ference with respect to a generative model. The study presented here de-
tails the complete formulation of such a generative model intended to
probe visual motion perception with a dynamic texture model. It is de-
rived in a set of axiomatic steps constrained by biological plausibility.
We extend previous contributions by detailing three equivalent formu-
lations of this texture model. First, the composite dynamic textures are
constructed by the random aggregation of warped patterns, which can
be viewed as three-dimensional gaussian fields. Second, these textures
are cast as solutions to a stochastic partial differential equation (sPDE).
This essential step enables real-time, on-the-fly texture synthesis using
time-discretized autoregressive processes. It also allows for the deriva-
tion of a local motion-energy model, which corresponds to the log likeli-
hood of the probability density. The log likelihoods are essential for the
construction of a Bayesian inference framework. We use the dynamic tex-
ture model to psychophysically probe speed perception in humans using
zoom-like changes in the spatial frequency content of the stimulus. The
human data replicate previous findings showing perceived speed to be
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positively biased by spatial frequency increments. A Bayesian observer
who combines a gaussian likelihood centered at the true speed and a spa-
tial frequency dependent width with a “slow-speed prior” successfully
accounts for the perceptual bias. More precisely, the bias arises from a
decrease in the observer’s likelihood width estimated from the experi-
ments as the spatial frequency increases. Such a trend is compatible with
the trend of the dynamic texture likelihood width.

1 Introduction

1.1 Modeling Visual Motion Perception. A normative explanation for
the function of perception is to infer relevant unknown real-world param-
eters from the sensory input with respect to a generative model (Gregory,
1980). Equipped with some prior knowledge about both the nature of neu-
ral representations and the structure of the world, the modeling approach
that emerges corresponds to the Bayesian brain hypothesis (Knill & Pouget,
2004; Doya, 2007; Colombo & Series, 2012; Kersten, Mamassian, & Yuille,
2004). This assumes that when given some sensory information S, the brain
uses neural computations that ultimately conform with Bayes’ theorem:

Psiai(slm) Py (1m)

Ps(s) (1.1)

Pyys (mls) =

This computation yields an estimate of the parameters m where the prob-
ability distribution function P55 is given by the generative model and Py
represents prior knowledge. This hypothesis has been well illustrated with
the case of motion perception (Weiss, Simoncelli, & Adelson, 2002). This
framework uses a gaussian parameterization of the generative model and
a unimodal (gaussian) prior in order to estimate perceived speed v when
observing a visual input I.

However, gaussian likelihoods and priors do not always fit with psy-
chophysical results (Wei & Stocker, 2012; Hassan & Hammett, 2015). Thus,
a major challenge is to refine the construction of generative models so that
they are consistent with the widest variety of empirical results.

In fact, the estimation problem inherent in perception is successfully
solved in part through the definition of an adequate generative model.
Probably the simplest generative model to describe visual motion is the
luminance conservation equation (Adelson & Bergen, 1985). It states that
luminance I(x, t) for (x,t) € R? x R is approximately conserved along tra-
jectories defined as integral lines of a vector field v(x, t) € R* x R. The cor-
responding generative model defines random fields as solutions to the
stochastic partial differential equation (sPDE),
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al
(v, v1>+a W, (1.2)

where (-, -) denotes the Euclidean scalar product in R? and VI is the spatial
gradient of I. To match the distribution of spatial scale statistics of natural
scenes (the 1/f amplitude fall-off of spatial frequencies) or some alternative
category of textures, the driving term W is usually defined as a stationary
colored gaussian noise corresponding to the average localized spatiotem-
poral correlation (which we refer to as the spatiotemporal coupling), and is
parameterized by a covariance matrix ¥, while the field is usually a con-
stant vector o (x, t) = vg accounting for a full-field translation with constant
speed.

Ultimately, the application of this generative model is useful for probing
the visual system with a probabilistic approach—for instance, for one seek-
ing to understand how observers might detect motion in a scene. Indeed,
as Nestares, Fleet, and Heeger (2000) and Weiss et al. (2002) showed, the
negative log likelihood of the probability distribution of the solutions I to
the luminance conservation equation 1.2 (on domain Q x [0, T] and for con-
stant speed v(x, t) = vp) is proportional to the value of the motion-energy
model (Adelson & Bergen, 1985) given by

/f (o, V(K% I)(x, ) + 3(K I)(,t)|2dtdx, (1.3)

where K is the whitening filter corresponding to the inverse square root of
¥ and * is the convolution operator. Using some prior knowledge about
the expected distribution of motions—for instance, a preference for slow
speeds—a Bayesian formalization can be applied to this inference prob-
lem (Weiss & Fleet, 2001; Weiss et al., 2002).

1.2 Previous Work in Context

1.2.1 Dynamic texture synthesis. The model defined in equation 1.2 is
quite simplistic compared to the complexity of natural scenes. It is there-
fore useful here to discuss generative models associated with texture syn-
thesis methods previously proposed in the computer vision and computer
graphics community. Indeed, the literature on the subject of static textures
synthesis is abundant (see, e.g., Wei, Lefebvre, Kwatara, & Turk, 2009).
Of particular interest for us is the work by Galerne, Gousseau, and
Morel (2011a) and Galerne (2011), which proposes a stationary gaus-
sian model restricted to static textures. This provides an equivalent gen-
erative model based on Poisson shot noise. Realistic dynamic texture
models have received less attention, and the most prominent method is
the nonparametric gaussian autoregressive (AR) framework developed by
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Doretto, Chiuso, Wu, and Soatto (2003), which has been thoroughly ex-
plored (Xia, Ferradans, Peyré, & Aujol, 2014; Yuan, Wen, Liu, & Shum,
2004; Costantini, Sbaiz, & Stisstrunk, 2008; Filip, Haindl, & Chetverikov,
2006; Hyndman, Jepson, & Fleet, 2007; Abraham, Camps, & Sznaier, 2005).
These works generally consist in finding an appropriate low-dimensional
feature space in which an AR process models the dynamics. Many of these
approaches focus on the feature space where the decomposition is effi-
ciently performed using singular value decomposition (SVD) or its higher-
order version (HOSVD) (Doretto et al., 2003; Costantini et al., 2008). In
Abraham et al. (2005), the feature space is the Fourier frequency domain,
and the AR recursion is carried independently over each frequency, which
defines the space-time stationary processes. A similar approach is used
in Xia et al. (2014) to compute the average of several dynamic texture mod-
els. Properties of these AR models have been studied by Hyndman et al.
(2007), who find that higher-order AR processes are able to capture per-
ceptible temporal features. A different approach aims at learning the man-
ifold structure of a given dynamic texture (Liu, Lin, Ahuja, & Yang, 2006),
while yet another deals with motion statistics (Rahman & Murshed, 2008).
What all these works have in common is the aim to reproduce the natural
spatiotemporal behavior of dynamic textures with rigorous mathematical
tools. Similarly, our concern is to design a dynamic texture model that is pre-
cisely parameterized for experimental purposes in visual neuroscience and
psychophysics.

1.2.2 Stochastic Differential Equations. Stochastic ordinary differential
equations (SODE) and their higher-dimensional counterparts, stochastic
partial differential equations (sPDE), can be viewed as continuous-time ver-
sions of these one-dimensional or higher-dimensional AR models. Con-
versely, AR processes can therefore also be used to compute numerical
solutions to these sPDE using finite difference approximations of time
derivatives. Informally, these equations can be understood as par-
tial differential equations perturbed by a random noise. The theoreti-
cal and numerical study of these sDEs is of fundamental interest in
fields as diverse as physics and chemistry (Van & Nicolaas, 1992), finance (El
Karoui, Peng, & Quenez, 1997), or neuroscience (Fox, 1997). They allow for
the dynamic study of complex, irregular, and random phenomena such
as particle interactions, stock or saving prices, or ensembles of neurons.
In psychophysics, sODEs have been used to model decision-making tasks
in which the stochastic variable represents the accumulation of knowledge
until the decision is made, thus providing detailed information about pre-
dicted response times (Smith, 2000). In imaging sciences, sPDE with sparse
nongaussian driving noise have been proposed as models of natural sig-
nals and images (Unser & Tafti, 2014). As described above, the simple mo-
tion energy model 1.3 can similarly be demonstrated to rely on the sPDE
equation, 1.2, of a stochastic model of visual sensory input. This has not
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previously been presented in a formal way in the literature. One key goal of
this letter is to comprehensively formulate a parametric family of gaussian
sPDEs that describes the modeling of moving images (and the correspond-
ing synthesis of visual stimulation) and thus allows for a finely grained sys-
tematic exploration of psychophysical behavior.

1.2.3 Inverse Bayesian Inference. Importantly, these dynamic stochastic
models are closely related to the likelihood and prior models, which serve
to infer motion estimates from the dynamic visual stimulation. In order
to account for perceptual bias, a now well-accepted methodology in the
field of psychophysics is to assume that observers are “ideal observers”
and therefore make decisions using optimal statistical inference, typically a
maximum a posteriori (MAP) estimator, using Bayes” formula to combine
this likelihood with some internal prior (see equation 1.1). Several experi-
mental studies have used this hypothesis as a justification for the observed
perceptual biases by proposing some adjusted likelihood and prior mod-
els (Doya, 2007; Colombo & Series, 2012), and more recent work pushes
these ideas even further. Observing some perceptual bias, is it possible to
invert this forward Bayesian decision-making process, and infer the (un-
known) internal prior that best fits a set of observed experimental choices
made by observers? Following Stocker and Simoncelli (2006), we coined
this promising methodology inverse Bayesian inference. This is, of course, an
ill-posed and highly nonlinear inverse problem, making it necessary to add
constraints on both the prior and the likelihood to make it tractable. For in-
stance Sotiropoulos, Seitz, and Series (2014), Stocker and Simoncelli (2006),
and Jogan and Stocker (2015) impose smoothness constraints in order to be
able to locally fit the slope of the prior. Here, we propose to use visual stim-
ulations generated by the (forward) generative model to test these inverse
Bayesian models. To allow for a simple yet mathematically rigorous analy-
sis of this approach within the context of speed discrimination, in this study,
we use a restricted parametric set of descriptors for the likelihood and pri-
ors. This provides a self-consistent approach to test the visual system, from
stimulation to behavior analysis.

1.3 Contributions. In this letter, we lay the foundations that we hope
will enable a better understanding of human motion perception by improv-
ing generative models for dynamic texture synthesis. From that perspective,
we motivate the generation of visual stimulation within a stationary gaus-
sian dynamic texture model.

We develop our current model by extending, mathematically detail-
ing, and testing in psychophysical experiments previously introduced
dynamic noise textures (Sanz-Leon, Vanzetta, Masson, & Perrinet, 2012;
Simoncini, Perrinet, Montagnini, Mamassian, & Masson, 2012; Vacher,
Meso, Perrinet, & Peyré, 2015; Gekas, Masson, & Mamassian, 2017)
coined motion clouds (MC). Our first contribution is a complete axiomatic
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Figure 1: Parameterization of the class of motion clouds (MC) stimuli. The il-
lustration relates the parametric changes in MC with real-world (top row) and
observer (second row) movements. (A) Orientation changes resulting in scene
rotation are parameterized through 6, as shown in the bottom row where (a) hor-
izontal and (b) obliquely oriented MCs are compared. (B) Zoom movements,
from either scene looming or observer movements in depth, are characterized
by scale changes reflected by a frequency term z shown for (a) a more distant
viewpoint compared to (b) a closer one. (C) Translational movements in the
scene characterized by V using the same formulation for (a) static, (b) slow, and
(c) fast-moving MC, with the variability in these speeds quantified by oy. The
variables & and 7 in the third row are the spatial and temporal frequency scale
parameters. The development of this formulation is detailed in the text.

derivation of the model, seen as a shot noise aggregation of dynamically
warped “textons.” Within our generative model, the parameters corre-
spond to average spatial and temporal transformations (zoom, orientation,
and translation speed) and associated standard deviations of random fluc-
tuations, as illustrated in Figure 1, with respect to external (objects) and in-
ternal (observer) movements. The second main contribution is the explicit
demonstration of the equivalence between this model and a class of linear
sPDEs. This shows that our model is a generalization of the well-known
luminance conservation (see equation 1.2). This sPDE formulation has two
chief advantages: it allows for a real-time synthesis using an AR recurrence
(in the form of a GPU implementation) and allows one to recast the log
likelihood of the model as a generalization of the classical motion energy
model, which is crucial to allow for Bayesian modeling of perceptual bi-
ases. Our last contribution follows from the Bayesian approach and is an
illustrative application of this model to the psychophysical study of motion
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perception in humans. This example of the model development constrains
the likelihood, which enables a simple fitting procedure to be performed
using both an empirical and a larger Monte Carlo—derived synthetic data
set to determine the prior driving the perceptual biases. The code asso-
ciated with this work is available at https://github.com/JonathanVacher
/projects/tree /master /bayesian_observer.

1.4 Notations. In the following, we denote (x,t) € R> x R the space-
time variable and (¢, 7) € R? x R the corresponding frequency variables.
If f(x,t)is a function defined on R3, then its Fourier transform is defined as

fE )< /R 2 /}R F(x, e (@O qrdy.

For & € R?, we denote & = |£](cos(££), sin(££)) € R? its polar coordinates.
For a function ¢ defined on R?, we denote g(x) = g(—x). We denote a random
variable with a capital letter such as A and a as a realization of A. We note
as P4 (a) the corresponding probability distribution of A.

2 Axiomatic Construction of the Dynamic Textures

Dynamic textures that are efficient to probe visual perception should
be generated from low-dimensional yet naturalistic parametric stochastic
models. They should embed meaningful physical parameters (such as the
effect of head rotations or whole-field scene movements; see Figure 1) into
the local or global dependencies of the random field (e.g., the covariance).
In the luminance conservation model, equation 1.2, the generative model is
parameterized by a spatiotemporal coupling encoded in the covariance X
of the driving noise and the motion flow v,.

This localized space-time coupling (e.g., the covariance, if one restricts
one’s attention to gaussian fields) is essential, as it quantifies the extent
of the spatial integration area, as well as the integration dynamics. This is
an important issue in neuroscience when considering the implementation
of spatiotemporal integration mechanisms from very small to very large
scales, that is, going from local to global visual features (Rousselet, Thorpe,
& Fabre-Thorpe, 2004; Born & Bradley, 2005; DiCarlo, Zoccolan, & Rust,
2012). In particular, this is crucial to understand the modular sensitivity
within the different lower visual areas. In primates for instance, the pri-
mary visual cortex (V1) generally encodes small features in a given range
of spatiotemporal scales. In contrast, ascending the processing hierarchy,
the middle temporal (V5/MT) area exhibits selectivity for larger visual fea-
tures. For instance, by varying the spatial frequency bandwidth of such dy-
namic textures, distinct mechanisms for perception and action have been
identified in humans (Simoncini et al., 2012). Our goal here is to develop a
principled axiomatic definition of these dynamic textures.
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2.1 From Shot Noise to Motion Clouds. We propose a derivation of a
general parametric model of dynamic textures. This model is defined by ag-
gregation, through summation, of a basic spatial “texton” template g(x). The
summation reflects a transparency hypothesis, which has been adopted, for
instance, by Galerne et al. (2011b). While one could argue that this hypoth-
esis is overly simplistic and does not model occlusions or edges, it leads
to a tractable framework of stationary gaussian textures, which has proved
useful to model static microtextures (Galerne et al., 2001b) and dynamic
natural phenomena (Xia, Ferradans, Peyré, & Aujol, 2014). The simplicity
of this framework allows for a fine tuning of frequency-based (Fourier) pa-
rameterization, which is desirable for the interpretation of psychophysical
experiments with respect to underlying spatiotemporal neural sensitivity.

We define a random field as

e t) S 22 3 glon, (e~ X, = V), @1

peN

where ¢, : R> — R? is a planar deformation parameterized by a finite-
dimensional vector a. The parameters (X, V,, Ap)pen are independent and
identically distributed random vectors. They account for the variability in
the position of objects or observers (¢4,) and their speed (V,), thus mimick-
ing natural motions in an ambient scene. The set of translations (X)pen is
a 2D Poisson point process of intensity A > 0. This means that defining for
any measurable A, C(A) = #{p; X, € A}, C(A) has a Poisson distribution
with mean A|A| (where |A] is the measure of A) and C(A) is independent of
CB)ifANB=4.

Intuitively, this model equation 2.1, corresponds to a dense mixing of
stereotyped static textons as in the work of Galerne et al. (2011b). In addi-
tion to the extension to the temporal domain, the originality of our approach
is twofold. First, the components of this mixing are derived from the texton
by visual transformations ¢,,, which may correspond to arbitrary transfor-
mations such as zooms or rotations (in which case, A, is a vector contain-
ing the scale factor and the rotation angle). (See the illustration in Figure 1.)
Second, we explicitly model the motion (position X, and speed V) of each
individual texton.

In the following, we denote P4 the common distribution of the indepen-
dent and identically distributed (i.i.d) (A,),, and we denote Py the distri-
bution in R? of the speed vectors (Vp)p- Section 2.3 instantiates this model
and proposes canonical choices for these variabilities.

The following result shows that the model, equation 2.1, converges for
high point density A — 400 to a stationary gaussian field and gives the
parameterization of the covariance. Its proof follows from a specialization
of theorem 3.1 in Galerne (2011) to our setting.
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Proposition 1. I, is stationary with bounded second-order moments. Its covari-
ance is T(x,t,x',t') = y(x — x', t — t') where y satisfies

V() eR?  ylt) = / / /R cglpa(x =By (Pa@)dvda,  (2.2)

where cg = g * § is the autocorrelation of g. When A — +-o0, it converges (in the
sense of finite-dimensional distributions) toward a stationary gaussian field I of
zero mean and covariance X.

This proposition enables us to give a precise definition of an MC:

Definition 1. A motion cloud (MC) is a stationary gaussian field whose covari-
ance is given by equation 2.2.

Note that following Galerne et al. (2011a), the convergence result of
proposition 1 could be used in practice to simulate a motion cloud I us-
ing a high but finite value of A in order to generate a realization of I,. We do
not use this approach and instead rely on the sPDE characterization proved
in section 3, which is well tailored for an accurate and computationally ef-
ficient dynamic synthesis.

2.2 Toward Motion Clouds for Experimental Purposes. The previous
section provides a theoretical definition of MC (see definition 1) that is char-
acterized by cg, ¢,, P4, and Py. In order to have better control of the covari-
ance y, one needs to resort to a low-dimensional representation of these pa-
rameters. We further study this model in the specific case where the warps
¢, are rotations and scalings (see Figure 1). They account for the character-
istic orientations and sizes (or spatial scales) of a scene, in relation to the
observer. We thus set

Va=(0.2)e[-m.7) xRY, () 2 zR_(x), 2.3)

where Ry is the planar rotation of angle 6. We now give some physical and
biological motivation to account for our particular choices for the distribu-
tions of the parameters. We assume that the distributions PPz and Pg of spa-
tial scales z and orientations 6, respectively (see Figure 1), are independent
and have densities, thus considering

Va=(0,z) e [-n,m) xR}, Pa(a) =Pz(z)Pe(0). (2.4)

The speed vector v is assumed to be randomly fluctuating around a central
speed vy € R?, so that

Vv eR2  Py(v) =Py (lv — ool). (2.5)
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In order to obtain “optimal” responses to the stimulation (as advocated by
Young & Lesperance, 2001) and based on the structure of a standard re-
ceptive field of V1, it makes sense to define the texton so that it resembles
an oriented Gabor (Fischer, Sroubek, Perrinet, Redondo, & Cristébal, 2007).
Such an elementary luminance feature acts as the generic atom

1 o2 2
8 (x) = 5— cos ({x, g))e Th, (2.6)

where o is the inverse of the standard deviation and & € R? is the spatial
frequency. Since the orientation and scale of the texton are handled by the
(0, z) parameters, we can impose the normalization &, = (1, 0) without loss
of generality. In the special case where 0 — 0, g, is a grating of frequency
& and the image I is a dense mixture of drifting gratings, whose power
spectrum has a closed-form expression detailed in proposition 2. It is fully
parameterized by the distributions (Pz, Pe, Py) and the central frequency
and speed (&g, vo). Note that it is possible to consider any arbitrary textons
g, which would give rise to more complicated parameterizations for the
power spectrum ¢, but here we decided to stick to the simple asymptotic
case of gratings.

Proposition 2. Consider the texton g,, when o — 0, the gaussian field I, (x, t)
defined in proposition 1 converges toward a stationary gaussian field of covariance
having the power spectrum

V(E, 1) e R? xR, P(&,T)

Pz (I£1) ( 7 + (vo, E))
= Po (ZLE) LPWw—vo)) | ————— | » 2.7
e re () (Pyy o)) iZ| (2.7)
where the linear transform L is such that
VueR, L(f)w) Y f —u/cos(¢))dg. 2.8)

Proof. See appendix A for the proof.

Remark 1. Note that the envelope of  as defined in equation 2.7 is con-
strained to lie within a cone in the spatiotemporal domain with the apex at
zero (see the division by [£]| in the argument of L(Pjy_,,))- This is an im-
portant and novel contribution when compared to a classical Gabor. Bas-
ing the generation of the textures on distributions of translations, rotations,
and zooms, we provide a principled approach to show that speed band-
width gets scaled with spatial frequency to provide a scale-invariant model
of moving texture transformations.
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2.3 Biologically Inspired Parameter Distributions. We now give
meaningful specialization for the probability distributions Pz, Pg, and
Py —yy), which are inspired by some known scaling properties of the visual
transformations relevant to dynamic scene perception.

2.3.1 Parameterization of Pz. First, the observer’s small, centered linear
movements along the axis of view (orthogonal to the plane of the scene)
generate centered planar zooms of the image. From the linear modeling of
the observer’s displacement and the subsequent multiplicative nature of
zoom, scaling should follow a Weber-Fechner law. This law states that sub-
jective perceptual sensitivity when quantified is proportional to the loga-
rithm of stimulus intensity. Thus, we choose the scaling z drawn from a
log-normal distribution Pz, defined in equation 2.9. The parameter 67 quan-
tifies the variation in the amplitude of zooms of individual textons relative
to the characteristic scale Zy,. We thus define

in(2)

T2n(1452) @9)

Pz(z) x Z;Oexp

where o means that we did not include the normalizing constant. In prac-
tice, we may prefer to parameterize this distribution by its mode and octave
bandwidth (zg, B;) instead of (o, 67). (See appendix C, where we discuss
two different parameterizations.)

2.3.2 Parameterization of Pg. In our model, the texture is perturbed by
variations in the global angle 6 of the scene; for instance, the head of the ob-
server may roll slightly around its normal position. The von Mises distribu-
tion, as a good approximation of the warped gaussian distribution around
the unit circle, is an adapted choice for the distribution of 6 with mean 6
and bandwidth og,

cos(2(6—p))

Po(0) xe *6 . (2.10)

2.3.3 Parameterization of Pyy_,,. We may similarly consider that the po-
sition of the observer is variable in time. On the first-order approximation,
movements perpendicular to the axis of view dominate, generating random
perturbations to the global translation vy of the image at speed v — vy € R?.
These perturbations are, for instance, described by a gaussian random walk.
Take, for instance, tremors, which are small, constant, and jittering move-
ments of the eye (< 1 degree). This justifies the choice of a radial distribution
(see equation 2.5) for Py. This radial distribution Pjy_,, is thus selected as
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Table 1: Full Set of Six Parameters Characterizing the Motion Cloud Stimulus
Model.

Parameter Translation ~ Orientation  Spatial Frequency
Name Speed Angle Modulus
(mean, dispersion) (vg, o) 6y, 00) (20, Bz)

. R&l oy
K ] "\EU Slope: /v ,’%Z
i\ B i o
\b/ bo /" &1 P 20 &
Two different projections of |€|?4(¢,7) in MC of three different spatial frequencies
Fourier space. 20, 220 and 4zg.

Figure 2: Graphical representation of the covariance  shown as a projection
on the spatial frequency plane (left) and the spatiotemporal frequency plane
(middle). Note the cone-like shape of the envelopes in both cases. The three
luminance stimulus images on the right are an example of synthesized frames
for three different spatial frequencies, respectively, from left to right, a low, a
medium, and a high frequency.

a bell-shaped function of width oy, and we choose here a gaussian function
for its generality:

_ 2
]P”V_UOH (I’) xe v, (211)

Note that as detailed in section 3.2, a slightly different bell function (with
a more complicated expression) should be used to obtain an exact equiva-
lence with the sPDE discretization.

2.3.4 Bringing Everything Together. Plugging expressions 2.9 to 2.11 into
the definition of the power spectrum of the defintion of MCs, equation 2.7,
one obtains a parameterization that shares similarities with the one origi-
nally introduced in Simoncini et al. (2012).

Table 1 recaps the parameters of the biologically inpired MC models. It
is composed of the central parameters vy for the speed, 6, for orientation,
and zg for the central spatial frequency modulus, as well as correspond-
ing dispersion parameters (oy, 0, Bz) that account for the typical devia-
tion around these central values. Figure 2 graphically shows the influence
of these parameters on the shape of the MC power spectrum .
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Figure 3: Comparison of a broadband (left) versus narrowband (right) stimu-
lus. Two instances (left and right columns) of two motion clouds having the
same parameters, except the frequency bandwidths o7, which were different.
The top column displays iso-surfaces of 7, in the form of enclosing volumes at
different energy values with respect to the peak amplitude of the Fourier spec-
trum. The bottom column shows an isometric view of the faces of a movie cube,
which is a realization of the random field I. The first frame of the movie lies on
the (x1, x2, t = 0) spatial plane. The motion cloud with the broadest bandwidth

is often thought to best represent stereotyped natural stimuli since it similarly

contains a broad range of frequency components.

We show in Figure 3 two examples of such stimuli for two different
spatial frequency bandwidths. This is particularly relevant as it is possible
to dissociate the respective roles of broader or narrower spatial frequency
bandwidths in action and perception (Simoncini et al., 2012). Using this for-

mulation to extend the study of visual perception to other dimensions like
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orientation or speed bandwidths should provide a means to systematically
titrate their respective role in motion integration and obtain a quantitative
assessment of their respective contributions in experimental data.

3 sPDE Formulation and Synthesis Algorithm

In this section, we show that the MC model (see definition 1) can equally
be described as the stationary solution of a stochastic partial differential
equation (sPDE). This sPDE formulation is important since we aim to deal
with dynamic stimulation, which should be described by a causal equation
that is local in time. This is crucial for numerical simulations, since this al-
lows us to perform real-time synthesis of stimuli using an autoregressive
time discretization. This is a significant departure from previous Fourier-
based implementation of dynamic stimulations (Sanz-Leon et al., 2012;
Simoncini et al., 2012). Moreover, this is also important to simplify the ap-
plication of MC inside a Bayesian model of psychophysical experiments
(see section 4). In particular, the derivation of an equivalent sPDE model
exploits a spectral formulation of MCs as gaussian random fields. The full
proof along with the synthesis algorithm follows.

To be mathematically correct, all the sPDEs in this letter are written in
the sense of generalized stochastic processes (GSP), which are to stochastic
processes what generalized functions are to functions. This allows for the
consideration of linear transformations of stochastic processes, like dif-
ferentiation or Fourier transforms as for generalized functions. We refer
to Unser, Tafti, and Sun (2014) for a recent use of GSP and to Gel’fand,
Vilenkin, and Feinstein (1964) for the foundation of the theory. The connec-
tion between GSP and stochastic processes has been described in previous
work (Meidan, 1980).

3.1 Dynamic Textures as Solutions of sPDE

3.1.1 Using a sPDE without Global Translation, vg = 0. We first give the
definition of an sPDE cloud I making use of another cloud I without trans-
lation speed. This allows us to restrict our attention to the case vy = 0 in
order to define a simple sPDE and then to explicitly extend that result to
the general case.

Definition 2. For a given spatial covariance Zw, 2D spatial filters («, B), and a
translation speed vy € R?, an sPDE cloud is defined as

1, 1) Y Iy(x — vot, 1), 3.1)

where Iy is a stationary gaussian field satisfying for all (x,t),
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ow 021, ol
D(lp) = = where D(lp) L T +ao ETtO + B+, (3.2)

where the driving noise - "W is white in time (i.e., corresponds to the temporal deriva-

tive of a Brownian motzon in time) and has a 2D stationary covariance ow in space
and « is the spatial convolution operator.

The random field I solving equation 3.2 thus corresponds to an sPDE
cloud with no translation speed, vg = 0. The filters («, ) parameterizing
this sPDE cloud aim at enforcing an additional correlation of the model
in time. Section 3.2 explains how to choose («, 8, ow) so that these sSPDE
clouds, which are stationary solutions of equation 3.2, have the power spec-
trum given in equation 2.7 (in the case that vy = 0), that is, are motion
clouds. Defining a causal equation that is local in time is crucial for numer-
ical simulation (as explained in section 3.3) but also to simplify the appli-
cation of MC inside a Bayesian model of psychophysical experiments (see
section 4.3.2).

The sPDE equation 3.2 corresponds to a set of independent stochastic
ODE:s over the spatial Fourier domain, which reads, for each frequency &,

R () BN (1 (1))
—_— (07
ot2 ot

+ BE)o(E, 1) = 6w(E)D(E, 1),
(3.3)

Vt e R,

where [y(£, t) denotes the Fourier transform with respect to the spatial vari-
able x only and 6y (£)? is the spatial power spectrum of 2 3 -, which means
that

Sw(x,y) =c(x—y) where &) =67(5). (34)

Finally, (&, t) ~ CN (0, 1) where CN is the complex-normal distribution.

While equation 3.3 should hold for all time ¢ € R, the construction of sta-
tionary solutions (hence, sPDE clouds) of this equation is obtained by solv-
ing the sODE, equation 3.3, forward for time t > t, with arbitrary boundary
conditions at time ¢t = tj, and letting ty — —oo. This is consistent with the
numerical scheme detailed in section 3.3.

The theoretical study of equation 3.2 is beyond the scope of this letter;
however, one can show the existence and uniqueness of stationary solutions
for this class of sSPDE under stability conditions on the filters («, 8) (see, e.g.,
Unser & Tafti, 2014, and Brockwell & Lindner, 2009, and appendix theorem
1). These conditions are automatically satisfied for the particular case of
section 3.2.

3.1.2 sPDE with Global Translation. The easiest way to define and syn-
thesize an sPDE cloud I with nonzero translation speed vy is to first define
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Ip solving equation 3.3 and then translating it with constant speed using
equation 3.1. An alternative way is to derive the sPDE satisfied by I, as de-
tailed in the following proposition. This is useful to define motion energy
in section 4.3.2.

Proposition 3. The MCs noted I with (o, B, Zw) the speed parameters, and v
the translation speed are the stationary solutions of the sPDE,

oW
D(I) + (G (1), vo) + (H(I)vo, vo) = TR (3.5)

where D is defined in equation 3.2, V21 is the Hessian of I (second-order spatial
derivative), and

G YL wx Vil +23,V,0 and H(I) L V2L (3.6)

Proof. See appendix A for the proof.

3.2 Equivalence between the Spectral and sPDE Formulations. Since
both MCs and sPDE clouds are obtained by a uniform translation with
speed vg of a motionless cloud, we can restrict our analysis to the case vy = 0
without loss of generality.

In order to relate MCs to sPDE clouds, equation 3.3 makes explicit that
the functions (& (&), A(£)) should be chosen in order for the temporal covari-
ance of the resulting process to be equal to (or at least to approximate well)
the temporal covariance appearing in equation 2.7. This covariance should
be localized around 0 and be nonoscillating. It thus makes sense to con-
strain (@(£), B(&)) so that the corresponding ODE, equation 3.3, be critically
damped, which corresponds to imposing the following relationship,

vE, a(f)

for some relaxation step size ¥(£). The model is thus solely parameterized
by the noise variance &y (§) and the characteristic time D ().

The following proposition shows that the sSPDE cloud model, equation
3.2, and the motion cloud model, equation 2.7, are identical for an appro-
priate choice of function Pjy_,.

Proposition 4. When considering
Vr>0, Pu_n(r)=L"(h)(r/ov) where h(u)=1+u*)"? (3.7)

where L is defined in equation 2.7, equation 3.2 admits a solution I, which is a
stationary gaussian field with power spectrum defined in equation 2.7, when setting
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1

2y 4 h(E) =
5%(6) = P(EDPo(8), and ()=

DEPIEN

(3.8)

Proof. See appendix A for the proof.

3.2.1 Expression for Pyy_,,. Equation 3.7 states that in order to obtain a
perfect equivalence between the MC defined by equations 2.7 and 3.2, the
function £7(h) has to be well defined. Therefore, we need to compute the
inverse transform of the linear operator L:

/2
VueR, L(f)u)= 2/0 f(—u/cos(p))de.

This is done for the function / in appendix B, proposition 7.

3.3 AR(2) Discretization of the sPDE. Most previous work on gaussian
texture synthesis (such as Galerne et al., 2011b, for static and Sanz-Leon
et al., 2012, Simoncini et al., 2012, for dynamic textures) has used a global
Fourier-based approach and the explicit power spectrum expression, equa-
tion 2.7. The main drawbacks of such an approach are that (1) it introduces
an artificial periodicity in time and thus can only be used to synthesize a
finite number of frames; (2) these frames must be synthesized at once, be-
fore the stimulation, which prevents real-time synthesis; and (3) the discrete
computational grid may introduce artifacts—in particular, when one of the
included frequencies is of the order of the discretization step or a bandwidth
is too small.

To address these issues, we follow the previous works of Doretto et al.
(2003) and Xia et al. (2014) and make use of an autoregressive (AR) dis-
cretization of the sPDE, equation 3.2. In contrast with this previous work,
we use a second-order AR(2) regression (instead of a first-order AR(1)
model). Using higher-order recursions is crucial to make the output con-
sistent with the continuous formulation equation, 3.2. Indeed, numerical
simulations show that AR(1) iterations lead to unacceptable temporal ar-
tifacts. In particular, the time correlation of AR(1) random fields typically
decays too fast in time.

3.3.1 AR(2) Synthesis without Global Translation, vy = 0. The discretization
computes a (possibly infinite) discrete set of 2D frames (I(()l))Q ¢, separated

by a time-step A, and we approach the derivatives at time t = £A as

olp(-, t

70( 1) ~ A‘l(l((f) — I((f_l)) and
ot

8210('! t)

—_ 1 -1
D) o A2 4 10 210,
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which leads to the following explicit recursion,

Ve ey, I8 =25 — Aa— A2B)« IV

(=8 + M)« [TV 4 APWO), (3.9)

where § is the 2D Dirac distribution and where (W), are i.i.d. 2D gaus-
sian field with distribution N (0, =), and (I((f‘)_l), Iél“_l)) can be arbitrary
initialized.

One can show that when ¢y — —oo (to allow for a long enough warmup
phase to reach approximate time stationarity) and A — 0, then I3 de-
fined by interpolating I5(-, A€) =T © converges (in the sense of finite-
dimensional distributions) toward a solution Iy of the sPDE, equation 3.2.
Here we choose to use the standard finite difference. However, we refer to
Unser, Tafti, Amini, and Kirshner (2014) and Brockwell, Davis, and Yang
(2007) for more advanced discretization schemes. We implement the recur-
sion equation 3.9 by computing the 2D convolutions with FFTs on a GPU,
which allows us to generate high-resolution videos in real time, without the
need to explicitly store the synthesized video.

3.3.2 AR(2) Synthesis with Global Translation. The easiest way to approxi-
mate an sPDE cloud using an AR(2) recursion is to simply apply formula 3.1

to (I(()[))( as defined in equation 3.9, that is, to define

def.

1O(x) L 19 (x — vpAL).

An alternative approach would consist in directly discretizing the sPDE,
equation 3.5. We did not use this approach because it requires the discretiza-
tion of spatial differential operators G and # and is, hence, less stable. A
third, somehow hybrid, approach, is to apply the spatial translations to the
AR(2) recursion and define the following recursion,

I = Uy x IO + V) £ D + AZWO, (3.10)
def. _ a2
where {u”“ d:ﬁ (28 = Aot = AZB) 5 uy (3.11)
Vo = (=8 4+ Aa) * $_2ap,»

where §; indicates the Dirac at location s, so that (s x I)(x) = I(x — s) imple-
ments the translation by s. Numerically, it is possible to implement equa-
tion 3.10 over the Fourier domain,

[D(&) = Uy ()D(&) + Vg OITV(E) + A%6w () (§),
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1’700 (&) = 2—AaE) — AZB(E))e*iA"OE,
0,y () ' (1 + AG(&))e2idms,

where

and where ©w® is a 2D white noise.

4 An Empirical Study of Visual Speed Discrimination

To exploit the useful parametric transformation features of our MC model
and provide a generalizable proof of concept based on motion perception,
we consider here the problem of judging the relative speed of moving dy-
namical textures. The overall aim is to characterize the impact of both av-
erage spatial frequency and average duration of temporal correlations on
perceptual speed estimation, based on empirical evidence.

4.1 Methods. The task was to discriminate the speed v € R of an MC
stimulus moving with a horizontal central speed v = (v, 0). We assign as the
independent experimental variable the most represented spatial frequency
2z, denoted z in the rest of the letter for easier reading. The other parameters
are set to the following values,

1 b1 b/

O’V_E, 90—5, U(H)—E.
Note that oy is thus dependent on the value of z to ensure that t* = i stays
constant. This parameter t* controls the temporal frequency bandwidth,
as illustrated in the middle of Figure 2. We used a two-alternative forced-
choice (2AFC) paradigm. In each trial, a gray fixation screen with a small
dark fixation spot was followed by two stimulus intervals of 250 ms each,
separated by an uniformly gray 250 ms interstimulus interval. The first
stimulus had parameters (v1, z1), and the second had parameters (v,, z2). At
the end of the trial, a gray screen appeared asking the participant to report
which one of the two intervals was perceived as moving faster by pressing
one of two buttons—that is, whether v; > vy or vs > 1.

Given reference values (v*, z*), for each trial, (v1, z1) and (v2, z) are se-
lected such that
L * X *
{”" SVLEETTAL  here Ay = (=2,-1,0,1,2),
UjEl) + Ay, Z]'ZZ*

where (i, j) = (1,2) or (i, j) = (2, 1) (i.e., the ordering is randomized across
trials) and where z values are expressed in cycles per degree (c/°) and v
values in °/s. The range Az is defined in Table 2. Ten repetitions of each
of the 25 possible combinations of these parameters are made per block of
250 trials and at least 4 of such blocks were collected per condition tested.
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Table 2: Stimulus Parameters for the Range of Tested Experimental Conditions.

Case t* oy Bz v* z* Ay

Al 200ms  1.0¢/° X 5°s 0.78c/° {-0.31,-0.16,0,0.16, 0.47}
A2 200ms  1.0¢/° X 5°s 125c¢/° {-0.47,-0.31,0,0.31,0.63}
A3 200 ms X 128 5°/s 125c¢/° {-0.47,-0.31,0,0.31,0.63}
A4 100 ms X 128 5°s 125c¢/° {-0.47,-0.31,0,0.31,0.63}
A5 200 ms X 128 10°/s 1.25¢/° {-0.47,-0.31,0,0.31,0.63}

Note: Al and A2 in the first two rows are both bandwidth controlled in ¢/° and A3
to A5 are bandwidth controlled in octaves with high (A3 and A5) and low (A4) t*.

The outcome of these experiments are summarized by psychometric curve
samples @, .-, where for all (v —v*,z — z*) € Ay x Ay, the value ¢ .+ (v, 2)
is modeled as a Bernoulli random variable with parameter ¢, .+ (v, z) that a
stimulus generated with parameters (v*, z) is moving faster than a stimulus
with parameters (v, z*).

We tested different scenarios summarized in Table 2. Each row corre-
sponds to approximately 35 minutes of testing per participant and was
always performed by at least three of the participants. Stimuli were gen-
erated using Matlab 7.10.0 on a Mac running OS 10.6.8 and displayed on
a 20” Viewsonic p227f monitor with resolution 1024 x 768 at 100 Hz. Psy-
chophysics routines were written using Matlab, and Psychtoolbox 3.0.9 con-
trolled the stimulus display. Observers sat 57 cm from the screen in a dark
room. Five male observers with normal or corrected-to-normal vision took
part in these experiments. They gave their informed consent, and the exper-
iments received ethical approval from the Aix-Marseille Ethics Committee
in accordance with the declaration of Helsinki.

4.2 Psychometric Results. Estimating speed in dynamic visual scenes
is undoubtedly a crucial skill for successful interaction with the visual envi-
ronment. Human judgments of perceived speed have therefore generated
much interest and been studied with a range of psychophysics paradigms.
The different results obtained in these studies suggest that rather than
computing a veridical estimate, the visual system generates speed judg-
ments influenced by contrast (Thompson, 1982), speed range (Thompson,
Brooks, & Hammett, 2006), luminance (Hassan & Hammett, 2015), spa-
tial frequency (Brooks, Morris, & Thompson, 2011; Simoncini et al., 2012;
Smith, Majaj, & Movshon, 2010), and retinal eccentricity (Hassan, Thomp-
son, & Hammett, 2016). There are currently no theoretical models of the
underlying mechanisms serving speed estimation that capture this depen-
dence on such a broad range of image characteristics. One of the reasons
for this might be that the simplified grating stimuli used in most of the
previous studies do not allow experimenters to shed light on the possible
elaborations in neural processing that arise when more complex natural or
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naturalistic stimulation is used. Such elaborations, like nonlinearities in
spatiotemporal frequency space, can be seen in their simplest form even
with a superposition of a pair of gratings (Priebe, Cassanello, & Lisberger,
2003). In the current work, we use our formulation of motion cloud stim-
uli, which allows for separate parametric manipulation of peak spatial fre-
quency (z), spatial frequency bandwidth (B;, 0;), and stimulus lifetime (t*),
which is inversely related to the temporal variability. The stimuli are all
broadband, closely resembling the frequency properties under natural stim-
ulation. Our approach is to test five participants under several parametric
conditions given in Table 2 and using a large number of trials.

4.2.1 Psychometric Function Estimation. The psychometric function is es-
timated by the following sigmoidal template function,

‘/’zlf*fﬂ(“’ )=y (u) , (4.1)
’ EZ.Z'

where v (t) = \/% fiw ¢=5"/2ds is the cumulative normal function and

(2,2, 27 +) denotes, respectively, bias and inverse sensitivity. The collected
data are used to fit the two parameters using maximum likelihood estima-
tion (see Wichmann & Hill, 2001),

(2, £) = argmin Y " KL(@y- ),

wx v

where KL(p|p) is the Kullback-Leibler divergence between samples p and
model p under a Bernouilli distribution:

: o
ki) = plog (£ ) + - pyiog (1=2).

Results of these estimations are shown in Figure 8 for both nonparametric
and linear X ,. fits.

Remark 2. In practice we perform the fit in the log-speed domain, that is,
we consider ¢ .+ (3, z) where & = In(1 + v/vg) with vg = 0.3°/s following
Stocker and Simoncelli (2006). As the estimated bias ji is obtained in the
log-speed domain, we convert it back to the speed domain by computing
w, which solves the following equation:

log(1 + (v* + )/00) = log(1 + v*/vg) + .

Then the speed bias is u = (vg + v*)(exp (i) — 1).
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Figure 4: Averaged results over participants for the perceptual biases (top
row) and inverse slope (bottom row) plotted against the tested central spa-
tial frequency z. The specific parameters for each column are indicated above:
bandwidth in degrees (deg) or octaves (oct.), value of stimulus lifetime t*, and
reference speed v*. Small markers represent individual results, and large mark-
ers represent population average. (a-d) Speed biases, which generally show an
increase at higher frequencies, but with individual differences. (e-h) Inverse
psychometric slopes that generally appear to be constant or decreasing across
frequency. From left to right: conditions A1-A2, A3, A4, and A5 (see Table 2 for
details).

4.2.2 Cycle-Controlled Bandwidth Conditions. The main manipulation in
each case is the direct comparison of the speed of a range of five stimuli in
which the central spatial frequency varies between five values, but all other
parameters are equated under the different conditions. In a first manipu-
lation in which bandwidth is controlled by fixing it at a value of 1 ¢/° for
all stimuli (conditions Al and A2 in Table 2), we find that lower frequen-
cies are consistently perceived to be moving slower than higher frequencies
(see Figure 4a). This trend is the same for both the lower and the higher
spatial frequency ranges used in the tasks, yet the biases are smaller for the
higher frequency range (see Al and A2 in Table 2 for details). This sug-
gests that the effect generalizes across the two scales used, but that shifting
the central spatial frequency value of the stimulus, which forms the refer-
ence scale, results in a change in sensitivity during speed discrimination.
For example, comparing Al and A2 performance in Figure 4, when the five
stimuli of different speed that make up the reference scale are changed from
z* = 0.78 (Al) to z* = 1.25 (A2), speed estimates seem to become less reli-
able. The same comparison is using a different psychometric measurement
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scale in each case. The sensitivity to the discrimination of stimuli measured
in the inverse of the psychometric slope is found to remain approximately
constant across the range of frequency tested for each of the tested spatial
frequencies (see Figure 4e). However, the sensitivity increases significantly
(X ; decreases) from condition A1 to condition A2. Such an effect suggests
that an increasing trend in sensitivity may exist (see section 4.2.4).

4.2.3 Octave-Controlled Bandwidth Conditions. The octave-bandwidth-
controlled stimuli of conditions A3 to A5 (see Table 2) allow us to vary the
spatial frequency manipulations (z) in a way that generates scale-invariant
bandwidths exactly as would be expected from zooming movements to-
ward or away from scene objects (see Figure 1). Thus, if trends seen in Fig-
ure 4e were purely the result of ecologically invalid fixing of bandwidths
at 1 ¢/° in the manipulations, this would be corrected in the current manip-
ulation. Only the higher-frequency comparison range from conditions A2
is used because trends are seen to be consistent across conditions Al and
A2. We find that the trends are generally the same as in Figure 4a. Indeed
higher spatial frequencies are consistently perceived as faster than lower
ones, as shown in Figures 4b to 4d. Interestingly, for the degree bandwidth-
controlled stimuli, the biases are lower than those for the equivalent octave-
controlled stimuli (e.g., compare Figure 4a with 4b). This can also be seen
in Figure 10 (conditions A2 and A3). A change in the bias is also seen with
the manipulation of t*, as increasing temporal frequency variability when
going from biases in Figure 4b to those in Figure 4c entails a reduction in
measured biases, with an effect of about 25%, which is also visible in Fig-
ure 10 (conditions A3 and A4 for M1).

4.2.4 Is Sensitivity Dependent on Stimulus Spatial Frequency? To explore
further the sensitivity trend, we fit the data with a psychometric function
by assuming a linear model for X, .. and test for a significant negative slope.
None of the slopes are significantly different from 0 at the population level.
At the individuals’ level, among all conditions and subjects, we find that 13
out of 21 slopes were significantly decreasing. Therefore, we interpret this
as a possible decrease in sensitivity at higher z seen in 13 out of 21 of the
cases, but one that shows large individual differences in sensitivity trends.

4.2.5 Qualitative Results Summary

* Spatial frequency has a positive effect on perceived speed (i, - in-
creases as z increases).

+ The inverse sensitivity remains constant or is decreasing with spa-
tial frequency (resp. X, .. does not depend on z or decreases as z in-
creases), but there are large individual differences in this sensitivity
change.
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In the next section, we detail a Bayesian observer model to account for
these observed effects.

4.3 Observer Model. We list here the general assumptions underlying
our model:

1. The observer performs abstract measurement of the stimulus de-
noted by a real random variable M.

2. The observer estimates speed using an estimator based on the poste-
rior speed distribution Py .

3. The posterior distribution is implicit; Bayes’ rule states that Py ) o
IPM‘va.

4. The observer knows all other stimulus parameters (in particular, the
spatial frequency z).

5. The observer takes a decision without noise.

These asssumptions correspond to the ideal Bayesian observer model.
We detail below the relation between this model and the psychometric bias
and inverse sensitivity (. -+, X, .+). We also give details to derive the likeli-
hood directly from the MC model and discuss the expected consequences.

4.3.1 Ideal Bayesian Observer. Assumptions 1 to 5 correspond to the
methodology of the Bayesian observer used for instance in Stocker and Si-
moncelli (2006), Sotiropoulos et al. (2014), and Jogan and Stocker (2015).
This previous work provides the foundation for the work on Bayesian ob-
server models in perception on which we build our modifications account-
ing for our naturalistic dynamic stimulus case. We assume that the posterior
speed distribution may depend on spatial frequency because any observed
effects must come from the change in spatial frequency and the effect it
may have on the likelihood. This assumption is also motivated by a body of
empirical evidence showing consistent effects of spatial frequency changes
on speed estimation (Brooks et al., 2011; Vacher et al., 2015). Findings from
primate neurophysiology probing extrastriate cortical neurons with com-
pound gratings also show that speed is estimated by neural units whose
speed response (i.e., not just response variance associated with likelihood
widths) is highly dependent on spatiotemporal frequency structure (Priebe
et al., 2003; Perrone & Thiele, 2001). Finally, we also assume that the ob-
server measures speed using a maximum a posteriori (MAP) estimator,

d(m) = argmax Py z(v|m, z)
v

= argmin[— log(Pamy.z(m|v, 2)) — log(Pyz(v]2))], (4.2)

computed from the internal representation m € R of the observed stimulus.
Note that the distribution of measurements (the likelihood) and the prior
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bias
— = Py, z(mlv, 2): likelihood
= Py z(m]z): prior probability
= Py ar,z(v|m, 2): posterior probability
; T > m
v+ac? v

Figure 5: Multiplying a gaussian likelihood by a Laplacian prior gives a gaus-
sian posterior that is similar to a shifted version of the likelihood.

are both conditioned on spatial frequency z. As the likelihood is also obvi-
ously conditioned on speed, we denote measurement as M, .. To simplify
the numerical analysis, we assume a gaussian likelihood (in log-speed do-
main), with a variance independent of v consistently with the previous liter-
ature (Stocker & Simoncelli, 2006; Sotiropoulos et al., 2014; Jogan & Stocker,
2015). Furthermore, we assume that the prior is Laplacian (in log-speed do-
main) as this gives a good description of the a priori statistics of speeds in
natural images (Dong, 2010),

1 _m=o?

e ¥ and Pyiz(v|z) =Py(v) xe™, (4.3
N viz(v|z) v(v) (4.3)

Puyv.z(mlo, z) =

where a < 0.

Remark 3. We initially assume that the posterior speed distribution is con-
ditioned on spatial frequency; thus, the likelihood and prior distributions
also depend on spatial frequency. However, there is currently no conclu-
sive support in favor of a spatial frequency-dependent speed prior in the
literature, but evidence of spatial frequency influencing speed estimation is
discussed in the previous paragraph. Therefore, only the likelihood width
o, depends on spatial frequency z, and the log-prior slope a does not. We
discuss in more detail the choice of the likelihood and its dependence on
spatial frequency in section 4.3.2.

Figure 5 shows an example of how the likelihood and prior described in
equation 4.3 combine into a posterior distribution that resembles a shifted
version of the likelihood. In practice, we are able to compute the distribution
of the estimates 9(M, ;) as stated in the following proposition:

Proposition 5. In the special case of the MAP estimator, equation 4.2 with a
parameterization defined in equation 4.3, one has
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(M, ) ~ N (v +ac?, o2). (4.4)

Once the observer has estimated the speed of two presented stimuli, he
must take a decision to judge which stimulus was faster. Following assump-
tion 5, the decision is ideal in the sense that it is performed without noise.
In other words, the observer compares the two speeds and decides whether
(0(m, »+), 0(m, ) belongs to the decision set E = {(v1, v2) € R2|v1 > v2).
Thus, we define the theoretical psychometric curve of an ideal Bayesian
observer as

Following proposition 5, in our special case of gaussian likelihood and
Laplacian prior, the psychometric curve can be computed in closed form.

Proposition 6. In the special case of the MAP estimator, equation 4.2, with a
parameterization defined in equation 4.3, one has

v —v* +a(o2 —o?)

s
[ 2 2
0.+ 0

- def.
G2 (0,2) = 10 (0,2) = Y (4.5)

where r is defined in equation 4.1.
Proof. See appendix A for the proof.

Proposition 6 provides the connection between the Bayesian model pa-
rameters and the classical psychometric measures of bias and sensitivity. In
particular, it explains the heuristic sigmoidal templates commonly used in
psychophysics (see section 4.2). An example of two psychometric curves is
shown in Figure 6. We have the following relations:

Uz = a(o? — 02), (4.6)

2. =0k +o? 4.7)
Remark 4. The experiment allows us to estimate bias and inverse sensi-
tivity (uz 2+, 2, 2+). Knowing these parameters, it is possible to recover pa-
rameters of the ideal Bayesian observer model. Equation 4.7 has a unique
solution, and equation 4.6 can be solved using the least square estimator.

Remark 5. Under this model, a positive bias comes from a decrease in like-
lihood width and a negative log-prior slope. As concluded in section 4.2, we
observe a significant decrease in inverse sensitivity in 13 of 21 subjects and
conditions. Therefore, the model, when fitted to the data, will force the like-
lihood width to decrease. Further experiments will be necessary to verify
the significance of this observation. Yet, the model is well supported by the
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Figure 6: The shape of the psychometric function follows the estimation of the
two speeds by the Bayesian inference described in Figure 5. This figure illus-
trates proposition 6. The bias ensues from the difference between the bias on
the two estimated speeds.

literature (see Stocker & Simoncelli, 2006; Jogan & Stocker, 2015; Sotiropou-
los et al., 2014) and is compatible with the properties of the stimuli (see
section 4.3.2).

4.3.2 Discussion: Likelihood. An MC I, . is a random gaussian field of
power spectrum defined by equation 2.7, with central speeds vy = (v, 0) and
central spatial frequency z (the other parameters being fixed, as explained
in section 4.1). Assuming that the abstract measurements correspond to the
presented frames, M, , = I, ;, it is possible to use the MC generative model
as a likelihood. In the absence of a prior, the MAP estimator is equal to the
maximum likelihood estimator (MLE):

o (m) = dME@) = argmin — log(Pyy z(ilv, 2)). (4.8)

Thanks to the sPDE formulation, it is possible to give a simple rigorous
expression for — log(Pyv z(ilv, z)) in the case of discretized clouds satisfying
the AR(2) recursion equation, 3.10. In this case, for some input video I, , =
(IO)L_,, the log likelihood reads

=1

- log(Pl\V,Z(L),ﬂ% Z)) = ZI + Kl)o (L),Z) where
L
K, (I )dif 1 Z Ky + 1€ ()
oo Un,z _A4£71 Q|W* X
Uy, * Ky 19(x) =V, * Ky » 17D (x) 2dx,

where U,, and V,, are defined in equation 3.11 and Ky is the spatial fil-
ter corresponding to the square root inverse of the covariance Xy, that is,
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Figure 7: Simulation of the speed distributions of a set of motion clouds with
the experimentally tested parameters. (a) Histogram of estimates of $ME(I, )
for z = 0.8 ¢/° defined by equation 4.8. These estimates are well approximated
by a gaussian distribution (red dashed line). (b) Standard deviation of estimates
of HMLE(I, ,) as a function of z. The standard deviation of these estimates is in-
versely proportional to the spatial frequency z.

which satisfies Ky (&) et 6w (£)~!. This convenient formulation can be used
to rewrite the MLE estimator of the horizontal speed v parameter of a MC as

oMLE(7) = argmin K, (i) where vy = (v,0) € R?, (4.9)

v

where we used the fact that Z; is independent from vy.

The solution to this optimization problem with respect to v is computed
using the Newton-CG optimization method implemented in the Python li-
brary scipy. In Figure 7a, we show a histogram of speed estimates $M-E(I, )
performed over 200 motion clouds generated with speed v = 6 °/s and spa-
tial frequency z = 0.78 c¢/°. In Figure 7b, we show the evolution of the stan-
dard deviation of speed estimates sMME(], ,) as a function of spatial fre-
quencies z € {0.47 ¢/°,0.62 ¢/°,0.78 ¢/°,0.94 ¢/°, 1.28 ¢/°}. For each spatial
frequency, estimates are again similarly obtained over a set of 200 motion
clouds generated with speed v = 6 °/s. First, we observed that dMM'E(T, ,) is
well approximated by a gaussian random variable with mean ». Second,
the standard deviation of these estimates decreases when the spatial fre-
quency increases. The two conclusions follow the fact that our model is
gaussian and that we impose the relation oy = 1/(t*z)—that standard de-
viation of speed is inversely proportional to spatial frequency. The decreas-
ing trend combined with a prior for slow speed a < 0 would reproduce the
positive bias of spatial frequency over speed perception observed in sec-
tion 4.2. If a human subject were estimating speed in such an optimal way,
equation 4.7 indicates that inverse sensitivity £, .. would also be inversely
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proportional to spatial frequency. Yet the primary analysis conducted in sec-
tion 4.2 does not give a clear trend for the inverse sensitivity. As a conse-
quence, that analysis is ambiguous and does not allow us to make defini-
tive conclusions about the compatibility of the MC model and the existing
literature with the observed human performances.

4.4 Likelihood and Prior Estimation. In order to fit this model to our
data, we use an iterative two-step method, each minimizing the Kullback-
Leibler divergence between the model and its samples. This process is the
equivalent of a maximum likelihood estimate. The first step is to fit each
psychometric curve individually and the second step to use the results as
a starting point to fit all the psychometric curves together. Numerically, we
used the Nelder-Mead simplex method as implemented in the Python li-
brary scipy.

Step 1: For all z, z*, initialized at a random point, compute

(1, £) = argmin ) " KL(@ye g} ),
129> o

where wff is defined in equation 4.1.
Step 2: Solve equations 4.6 and 4.7 between (2, £) and (4, &), initialize
at (@, 6), and compute

(4, 6) = argmin Z Z KL(@o+ 2+ 10.%4),
a,o

z,z2* v
where ¢.°,. is defined in equation 4.5.

We use a repeated stochastic initialization in the first step in order to
overcome the presence of local minima encountered during the fitting pro-
cess. The approach was found to exhibit better results than a direct and
global fit (third point).

4.5 Modeling Results. We use the Bayesian formulation detailed in sec-
tion 4.3.1 and the fitting process described in section 4.4 to estimate, for
each subject, the likelihood widths and the corresponding log-prior slopes
under the tested experimental conditions. We plot in Figure 8 the fit of bias
and inverse sensitivity for the sigmoid model (see section 4.2) and Bayesian
model (see section 4.3.1) averaged over subjects. Figure 9 displays the cor-
responding likelihood widths and log-prior slopes for the Bayesian model
also averaged over subjects. Finally, Figure 10 summarizes the total bias be-
tween extremal tested spatial frequencies for each experimental condition
and for both models. Error bars correspond to the standard deviation of the
mean.
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Figure 8: The model fitted speed biases (top row) and inverse sensitivity (bot-
tom row) for the different conditions for the Bayesian model (blue) and the sig-
moid model (black). (a—d) Speed biases generally increase with increasing spa-
tial frequency. (e-h) Inverse sensitivity tends to decrease for the Bayesian model
but is configured not to do so for the sigmoid model. The parameters are indi-
cated above, respectively: bandwidth in octave (oct.) or degree (deg.), value of
stimulus lifetime #*, and reference speed »*. Small markers represent individ-
ual results, and large markers represent population average. From left to right:
conditions A1-A2, A3, A4, and A5.

4.5.1 Measured Biases and Inverse Sensitivity. As shown in Figure 8, both
models M2 and M3 correctly account for the biases and inverse sensitiv-
ity estimated with model M1 (see section 4.2) except for conditions Al and
A2. For condition A1 (see Figure 8a), the bias is underestimated by models
M2 and M3 compared to model M1. For condition A2 (see Figure 8e), the in-
verse sensitivity is overestimated by models M2 and M3 compared to model
M1. The observed differences come from the fact that in models M2 and M3,
the overlapping spatial frequencies of conditions A1 and A2 are pulled to-
gether. As a consequence, the fit is more constrained than for model M1
and is therefore smoother. While that discrepancy does not affect our con-
clusion, it raises the question of pulling different overlapping conditions
together. The overlapping tested spatial frequencies are together, whereas
they were collected with different reference spatial frequencies such that
the sensitivity of each of the psychometric speed measurement scales ap-
pears to have been different. Despite averaging over subjects, the Bayesian
estimates of inverse sensitivity appear smoother than the sigmoid estimates
(see Figures 8f and 8h). Finally, a clearer decreasing trend is visible in the
Bayesian estimates of inverse sensitivity.
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Figure 9: The model-fitted likelihood widths (top row) and log-prior slopes
(bottom row) for the different conditions for the Bayesian model. (a—d) Likeli-
hood widths tend to decrease with increasing spatial frequency. (e-h) Log-prior
slopes are negative and higly variable between subjects. The parameters are in-
dicated above, respectively: bandwidth in octave (oct.) or degree (deg.), value
of stimulus lifetime t* and reference speed v*. Small markers represent individ-
ual results, and large markers represent population average. From left to right:
conditions A1-A2, A3, A4, and A5.

4.5.2 Corresponding Sensory Likelihood Widths. There is a systematic de-
creasing trend within the likelihood width fits in Figures 9a, 9b, and 9d,
which shows an inverted U-shape. The fact that all subjects did not run all
experimental conditions explains this difference (two subjects out of four
show a U-shape bias; see Figure 8c). Subject-to-subject variability is simi-
lar for all conditions except for the least temporal variability for which it is
smaller (see Figure 9c).

4.5.3 Corresponding Log-Prior Slopes. The log-prior slope estimates have
a high subject-to-subject variability for conditions A3 to A5 (see Figures 9f
to 9h) compared to conditions A1-A2 (see Figure 9¢). The high intersub-
ject variability is expected in speed discrimination tasks, and in the case of
conditions A4 and A5, this is particularly magnified by two subjects that
have an extremely low value for a, (their small markers are not visible in
Figures 9e and 9f).

4.6 Insights into Human Speed Perception. We exploited the prin-
cipled and ecologically motivated parameterization of MC to study bi-
ases in human speed judgements under a range of parametric conditions.
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Figure 10: Biases amplitude. Sum of the absolute biases at lower and higher spa-
tial frequency averaged over participants. Small markers represent individual
results, bars represent population average, and error bars represent one stan-
dard error of the mean.

Primarily, we consider the effect of scene scaling on perceived speed,
manipulated via central spatial frequencies in a similar way to previous
experiments that have shown spatial frequency-induced perceived speed
biases (Brooks et al., 2011; Smith & Edgar, 1990). In general, our experimen-
tal result confirms that higher spatial frequencies are consistently perceived
to be moving faster than compared lower frequencies, which is the same
result as reported in a previous study using both simple gratings and com-
pounds of paired gratings, the second of which can be considered as a rel-
atively broadband bandwidth stimulus (Brooks et al., 2011) compared to
single grating stimuli, without considering the inhibitive interactions we
know to occur when multiple gratings are superimposed (Priebe et al.,
2003). In that work, they noted that biases were present but slightly re-
duced in the compound (broadband) stimuli. That conclusion is consistent
with a more recent psychophysics manipulation in which up to four dis-
tinct composite gratings were used in relative speed judgments. Estimates
were found to be closer to veridical as bandwidth was increased by adding
components from the set of four, but increasing spatial frequencies gener-
ally biased toward faster perceived speed, even if individual participants
showed different trends (Jogan & Stocker, 2015). Indeed, findings from pri-
mate neurophysiology studies have also noted that while responses are
biased by spatial frequency, the tendency toward true speed sensitivity
(measured as the proportion of individual neurons showing speed sensi-
tivity) increases when broadband stimulation is used (Priebe et al., 2003;
Perrone & Thiele, 2001). A model of visual motion sensitivity with a hier-
archical framework, selectively reading from and optimally decoding V1
inputs in an MT layer, has also been tested. It was found to be consistent
with human speed sensitivity to natural images (Burge & Geisler, 2015).
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It is increasingly being recognized that linear systems approaches to in-
terrogating visual processing with single sinusoidal luminance grating in-
puts represent a powerful but limited approach to study speed perception,
as they fail to capture the fact that naturalistic broadband frequency dis-
tributions may support speed estimation (Brooks et al., 2011; Meso & Si-
moncini, 2014; Meso & Zanker, 2009; Gekas et al., 2017). A linear consid-
eration, for example, may not fully account for the fact that estimation in
the presence of multiple sinusoidal components results in linear optimal
combination performing best among alternatives (Jogan & Stocker, 2015).
In that case, the simple monotonic increase in perceived speed predicted by
the optimal model when components were added to the compound is not
seen in the data, particularly in the difference between three and four com-
ponents. This may be due to interaction between components that are not
fully captured by this optimal linear model. Our work seeks to extend the
body of previous studies by looking at spatial-frequency-induced biases,
using a parametric configuration in the form of motion clouds, which al-
low a manipulation across a continuous scale of frequency and bandwidth
parameters. The effect of frequency interactions across the broadband stim-
ulus defined along the two-dimensional spatiotemporal luminance plane
allows us to measure the perceptual effect of the projection of different ar-
eas (e.g., see Figure 2) onto the same speed line. The measurement would
be the result of proposed inhibitory interactions, which occur during spa-
tiotemporal frequency integration for speed perception (Simoncini et al.,
2012; Gekas et al., 2017), which cannot be observed with component stim-
uli separated by several octaves (Jogan & Stocker, 2015).

We use a slower and a faster speed because previous work using sinu-
soidal grating stimuli has shown that below the slower range (<8 °/s), un-
certainty manipulated through lower contrasts causes an underestimation
of speeds, while at faster speeds (>16 °/s), it causes an overestimation, an
effect that is not fully explained by Bayesian models with a prior encour-
aging slow speeds. (Thompson et al., 2006; Hassan & Hammett, 2015). Our
findings show that biases are larger at the faster speed than the slower one.
Biases are also generally lower for the octave-controlled than for the cycle-
controlled stimuli, indicating that the underlying system was better at pro-
cessing the former.

The Bayesian fitting identifies a decrease in the likelihood width esti-
mates, which could explain the biases in over half of our fitted psycho-
metric functions. For cases of the same frequency range where compara-
ble likelihoods are estimated, some conditions—like the low and high t*
cases—have very different prior estimates. This result can be interpreted in
light of recent work (Gekas et al., 2017): biases might act along the speed
line and an orthogonal scale line within the spatiotemporal space, depend-
ing on the spread or bandwidth of the stimulus. While the current work
does not resolve some of the ongoing gaps in our understanding of speed
perception mechanisms, particularly as it does not tackle contrast-related
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biases, it shows that known frequency biases in speed perception also arise
from orthogonal spatial and temporal uncertainties when RMS contrast is
controlled—as it is within the MC stimuli. Bayesian models such as the
one we apply, which effectively project distributions in the spatiotempo-
ral plane onto a given speed line in which a linear low speed prior ap-
plies (Stocker & Simoncelli, 2006), may be insufficient to capture the ef-
fect of spatiotemporal priors, which may underlie some of the broad set
of empirical results. Individual differences, which are pervasive in these
experiments, may also be associated with internal assumptions that can be
considered as priors. Indeed for Bayesian models to fully predict speed per-
ception with more complex or composite stimuli, they often require various
elaborations away from the simplistic combination of likelihood and low
speed prior (Hassan & Hammett, 2015; Gekas et al., 2017; Jogan & Stocker,
2015; Sotiropoulos et al., 2014). Indeed even imaging studies considering
the underlying mechanisms fail to find definitive evidence for the encod-
ing of a slow speed prior (Vintch & Gardner, 2014).

5 Conclusion

In this work, we have proposed and detailed a generative model for the
estimation of the motion of dynamic images based on a formalization of
small perturbations from the observer’s point of view and parameterized
by rotations, zooms, and translations. We connected these transformations
to descriptions of ecologically motivated movements of both observers and
the dynamic world. The fast synthesis of naturalistic textures optimized to
probe motion perception was then demonstrated through fast GPU imple-
mentations applying autoregression techniques with much potential for fu-
ture experimentation. This extends previous work from Sanz-Leon et al.
(2012) by providing an axiomatic formulation. Finally, we used the stim-
uli in a psychophysical task and showed that these textures allow one to
further understand the processes underlying speed estimation. We used
broadband stimulation to study frequency-induced biases in visual percep-
tion, using various stimulus configurations, including octave bandwidth
and RMS contrast-controlled manipulations, which allowed us to manipu-
late central frequencies as scale-invariant stimulus zooms. We showed that
measured biases under these controlled conditions were qualitatively the
same at both a faster and a slower tested speed. By linking the stimulation
directly to the standard Bayesian formalism, we demonstrated that the sen-
sory representation of the stimulus (the likelihoods) in such models is com-
patible with the generative MC model in over half of the collected empir-
ical data cases. Together with a slow speed prior, the inference framework
correctly accounts for the observed bias. We foresee that more experiments
with naturalistic stimuli such as MCs and a consideration of more generally
applicable priors will be needed in the future.
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