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Image Segmentation vs Visual Segmentation

Great progress with deep learning:

I mostly supervised learning (∼ top-down approach)

I smart architecture but different from biological vi-
sion

I performance oriented

I work as a black box

Visual segmentation is more involved !

I variable but consistent across humans

I top-down + bottom-up processing

Our goal is to craft an open box model with all the ingredient of vision !
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Grouping and contours integration: a basis for visual segmentation ?

Tractable models and well-controlled experiments . . .
but how to generalize to natural images ?
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Toward an ideal observer model for visual segmentation

An ideal observer for visual segmentation of natural images !

I To guide future model driven psychophysical experiments (ongoing work, not presented
here)

Several constraints:

I Image statistics I Cortical features I Vision psychophysics
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Representation and non-Gaussian statistics of natural images

How are images represented ?

⇒ decomposition in a wavelet basis (receptive fields) (Bell
et al. 1997; Olshausen et al. 1996) I X = (X1, . . . ,Xn)T = (〈w1, I 〉, . . . , 〈wn, I 〉)T

What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)

Definition (Gaussian Scale Mixture)

Gaussian vector of visual features (G ∼ N (0,Σ)) × Contrast between features (Z ∼ L(ν))

X = ZG .
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Gaussian Scale Mixture explains surround modulation in V1

GSM ⇒ normalization:

X = (X (c),X (s)), G = (G (c),G (s))

G (c) ∝ X (c)√
ν +

∑
k wkX

2
k

Interpretation:

I G : vector of neurons responses (Coen-Cagli
and Schwartz 2013; Orbán et al. 2016)

I Z : normalization (canonical across the brain
Carandini et al. 2012)

I A normative model: vision is adapted to environmental statistics !
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Images statistics and V1 physiology suggest Mixtures of GSMs

Key question: How are neurons pooled together (i.e. normalized together) ?

Using a flexible pooling of neurons:
I qualitatively different image patches (Schwartz et al. 2006)
I better explanation of some neurons activity (Coen-Cagli, Kohn, et al. 2015)

Center+Surround or Center/Surround pooling
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Center+Surround or Center/Surround pooling

Homogeneous:
pooled together

Heterogeneous: kept
separate

I Homogeneous: strong sur-
round suppression

I basis for segmentation ?

I Heterogeneous: weak sur-
round suppression

I basis for contour detection ?
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Natural images statistics suggest Mixtures of GSMs

I Using a fixed pooling of neurons:

Two reasons for Mixture of GSMs:
I Natural images are non-stationary (statistics vary across space)
I Flexible pooling seems necessary (for image stats and physiology)
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Naive Mixture of Gaussian Scale Mixtures for image segmentation

Using wavelet feature vectors at a single pixel location we obtain:

Homogeneous

Heterogeneous

Decomposing the components:
I homogeneous: smoothing (∼ proximity grouping), see our pre-prints: texture-based

segmentation algorithm (Vacher, Mamassian, et al. 2019) + extension using hierarchical
features (Vacher and Coen-Cagli 2019). Can achieve state-of-the-art performances.

I heterogeneous: forcing the covariance structure (∼ flexible pooling)
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Gaussian Scale Mixture: grouping and contour integration

Heterogeneous component !

I Train a GSM on many natural images using center-surround feature vectors

Heterogeneous: kept
separate

I The covariance contains the association field structure !
I However not strong enough to distinguish contour from non-contour ⇒ enforcing
association field
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Heterogeneous component !

I Train a GSM on many natural images using center-surround feature vectors

Edge co-occurrence (Geisler et al. 2001)

I The covariance contains the association field structure !
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Contour component vs “garbage” component

I Forcing the association field structure ⇒ block diagonal covariance
I Equivalent to specify a linear subspace i.e. a basis ⇒ Principal Components (PCA)

Principal component of the block diagonal covariance trained on human labeled edges only:

0◦ 45◦ 90◦ 135◦

I In practice, it’s better to project the feature vectors onto this subspace before training.
I Similar to the template matching framework (Geisler 2018; Sebastian et al. 2017)
I Also, coherent with expected long edge receptive fields in the higher visual cortex (V2, V4)
(Hosoya et al. 2015; Liu et al. 2016)
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