

Departement of Systems and Computational Biology Albert Einstein College of Medicine

An ideal observer model for grouping and contour integration in natural images

Jonathan Vacher

With Ruben Coen-Cagli (Albert Einstein College of Medicine, New-York) and Pascal Mamassian (LSP, École Normale Supérieure, Paris).

> ECVP 29/08/2019

jonathan.vacher@einstein.yu.edu

https://jonathanvacher.github.io

Image Segmentation vs Visual Segmentation

Image Segmentation vs Visual Segmentation

Great progress with deep learning:

- mostly supervised learning (~ top-down approach)
- smart architecture but different from biological vision
- performance oriented
- work as a black box

Image Segmentation vs Visual Segmentation

Great progress with deep learning:

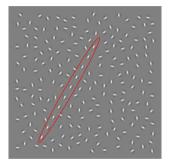
- mostly supervised learning (~ top-down approach)
- smart architecture but different from biological vision
- performance oriented
- work as a black box

Visual segmentation is more involved !

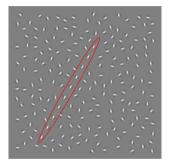
- variable but consistent across humans
- top-down + bottom-up processing

Our goal is to craft an open box model with all the ingredient of vision !

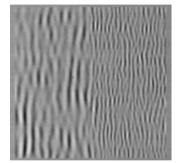
Contour perception (Field et al. 1993)



Contour perception (Field et al. 1993)

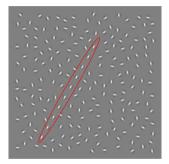


Texture perception (Landy et al. 2001)

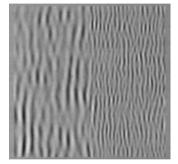


Artificial stimuli !

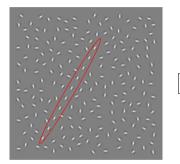
Contour perception (Field et al. 1993)



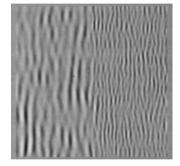
Texture perception (Landy et al. 2001)



Contour perception (Field et al. 1993)



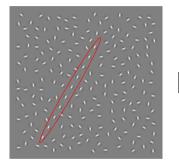
Texture perception (Landy et al. 2001)



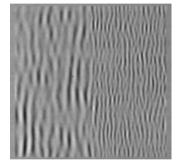
Tractable models and well-controlled experiments

Artificial stimuli !

Contour perception (Field et al. 1993)



Texture perception (Landy et al. 2001)



Tractable models and well-controlled experiments ... but how to generalize to natural images ?

Artificial stimuli !

An ideal observer for visual segmentation of natural images !

An ideal observer for visual segmentation of natural images !

An ideal observer for visual segmentation of natural images !

► To guide future model driven psychophysical experiments (ongoing work, not presented here)

An ideal observer for visual segmentation of natural images !

► To guide future model driven psychophysical experiments (ongoing work, not presented here)

Several constraints:

An ideal observer for visual segmentation of natural images !

► To guide future model driven psychophysical experiments (ongoing work, not presented here)

Several constraints:

Image statistics

An ideal observer for visual segmentation of natural images !

► To guide future model driven psychophysical experiments (ongoing work, not presented here)

Several constraints:

Image statistics

Cortical features

н	"	"	-		"	"	*
н	"	"	-		"	*	*
н	"	"	-	×	+	*	*
ж	"		+	×	+	+	*
	"	"	+	×	+	*	*
×	*		-	*	+	+	*
×	1	1	-	+	1	1	*

🖂 jonathan.vacher@einstein.yu.edu

An ideal observer for visual segmentation of natural images !

► To guide future model driven psychophysical experiments (ongoing work, not presented here)

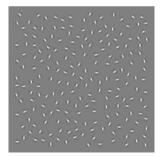
Several constraints:

Image statistics

Cortical features

н	"	"	-		"	+	
н	"	"	-		"	+	
н	"	"	-	×	+	*	*
ж	"	"	+	~	+	+	*
	"		+	×	+	+	*
*	*		-	-	+	+	*
×	,		-	-	+		

Vision psychophysics



How are images represented ?

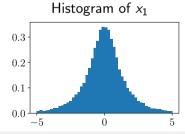
How are images represented ? \Rightarrow decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) $\triangleright X = (X_1, \ldots, X_n)^T = (\langle w_1, I \rangle, \ldots, \langle w_n, I \rangle)^T$

How are images represented ? \Rightarrow decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) $\triangleright X = (X_1, \ldots, X_n)^T = (\langle w_1, I \rangle, \ldots, \langle w_n, I \rangle)^T$

What are the coefficient statistics ?

How are images represented ? \Rightarrow decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) $\triangleright X = (X_1, \ldots, X_n)^T = (\langle w_1, I \rangle, \ldots, \langle w_n, I \rangle)^T$

What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)



https://jonathanvacher.github.io

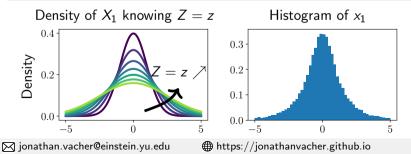
How are images represented ? \Rightarrow decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) $\triangleright X = (X_1, \ldots, X_n)^T = (\langle w_1, I \rangle, \ldots, \langle w_n, I \rangle)^T$

What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)

Definition (Gaussian Scale Mixture)

Gaussian vector of visual features (G $\sim \mathcal{N}(0,\Sigma)$) imes Contrast between features (Z $\sim \mathcal{L}(\nu)$)

$$X = ZG.$$



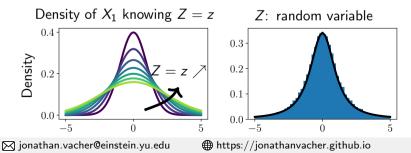
How are images represented ? \Rightarrow decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) $\triangleright X = (X_1, \ldots, X_n)^T = (\langle w_1, I \rangle, \ldots, \langle w_n, I \rangle)^T$

What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)

Definition (Gaussian Scale Mixture)

Gaussian vector of visual features (G $\sim \mathcal{N}(0,\Sigma)$) imes Contrast between features (Z $\sim \mathcal{L}(\nu)$)

$$X = ZG.$$



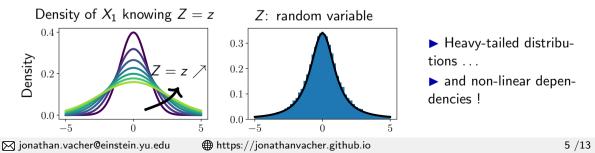
How are images represented ? \Rightarrow decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) $\triangleright X = (X_1, \ldots, X_n)^T = (\langle w_1, I \rangle, \ldots, \langle w_n, I \rangle)^T$

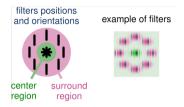
What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)

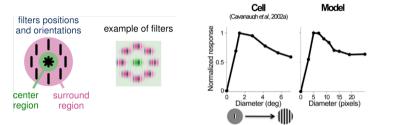
Definition (Gaussian Scale Mixture)

Gaussian vector of visual features (G $\sim \mathcal{N}(0,\Sigma)$) imes Contrast between features (Z $\sim \mathcal{L}(\nu)$)

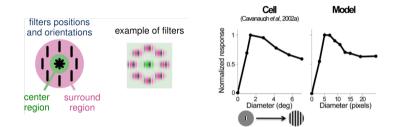
$$X = ZG.$$







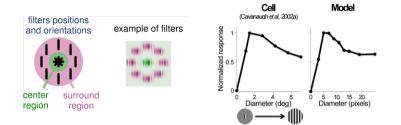
Taken from Coen-Cagli, Dayan, et al. 2012



Taken from Coen-Cagli, Dayan, et al. 2012

 $\mathsf{GSM} \Rightarrow \mathsf{normalization}$:

$$X = (X^{(c)}, X^{(s)}), \quad G = (G^{(c)}, G^{(s)})$$
 $G^{(c)} \propto rac{X^{(c)}}{\sqrt{
u + \sum_k w_k X_k^2}}$



Taken from Coen-Cagli, Dayan, et al. 2012

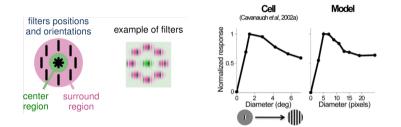
 $\mathsf{GSM} \Rightarrow \mathsf{normalization}$:

$$X = (X^{(c)}, X^{(s)}), \quad G = (G^{(c)}, G^{(s)})$$

$$G^{(c)} \propto rac{\chi^{(c)}}{\sqrt{
u + \sum_k w_k X_k^2}}$$

Interpretation:

- G: vector of neurons responses (Coen-Cagli and Schwartz 2013; Orbán et al. 2016)
- Z: normalization (canonical across the brain Carandini et al. 2012)



Taken from Coen-Cagli, Dayan, et al. 2012

 $\mathsf{GSM} \Rightarrow \mathsf{normalization}$:

$$X = (X^{(c)}, X^{(s)}), \quad G = (G^{(c)}, G^{(s)})$$

$$G^{(c)} \propto rac{X^{(c)}}{\sqrt{
u + \sum_k w_k X_k^2}}$$

Interpretation:

- G: vector of neurons responses (Coen-Cagli and Schwartz 2013; Orbán et al. 2016)
- Z: normalization (canonical across the brain Carandini et al. 2012)

► A normative model: vision is adapted to environmental statistics !

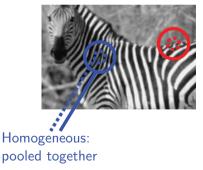
Key question: How are neurons pooled together (i.e. normalized together) ?

Key question: How are neurons pooled together (*i.e.* normalized together) ? Using a flexible pooling of neurons:

Key question: How are neurons pooled together (i.e. normalized together) ?

Using a flexible pooling of neurons:

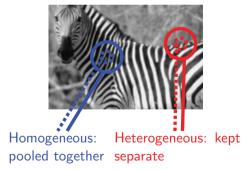
▶ qualitatively different image patches (Schwartz et al. 2006)



Key question: How are neurons pooled together (*i.e.* normalized together) ?

Using a flexible pooling of neurons:

▶ qualitatively different image patches (Schwartz et al. 2006)



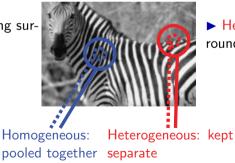
Key question: How are neurons pooled together (i.e. normalized together) ?

Using a flexible pooling of neurons:

- qualitatively different image patches (Schwartz et al. 2006)
- better explanation of some neurons activity (Coen-Cagli, Kohn, et al. 2015)

 $Center+Surround \ or \ Center/Surround \ pooling$

► Homogeneous: strong surround suppression



► Heterogeneous: weak surround suppression

Key question: How are neurons pooled together (i.e. normalized together) ?

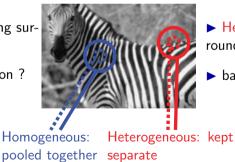
Using a flexible pooling of neurons:

- qualitatively different image patches (Schwartz et al. 2006)
- better explanation of some neurons activity (Coen-Cagli, Kohn, et al. 2015)

 $Center+Surround \ or \ Center/Surround \ pooling$

► Homogeneous: strong surround suppression

► basis for segmentation ?

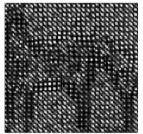


► Heterogeneous: weak surround suppression

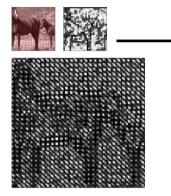
▶ basis for contour detection ?

Natural images statistics suggest Mixtures of GSMs

► Using a fixed pooling of neurons:

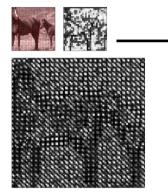


► Using a fixed pooling of neurons:

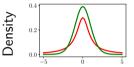


Normalization statistics vary accross an image $Z \sim \mathcal{L}(\nu)$

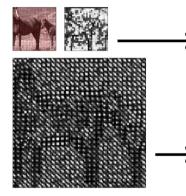
► Using a fixed pooling of neurons:



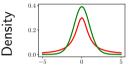
Normalization statistics vary accross an image $Z \sim \mathcal{L}(\nu)$



► Using a fixed pooling of neurons:

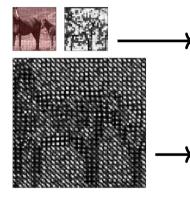


Normalization statistics vary accross an image $Z \sim \mathcal{L}(\nu)$



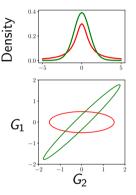
Covariances vary accross an image $G \sim \mathcal{N}(0, \Sigma)$

► Using a fixed pooling of neurons:

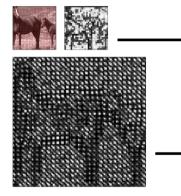


Normalization statistics vary accross an image $Z\sim \mathcal{L}(
u)$

Covariances vary accross an image $G \sim \mathcal{N}(0, \Sigma)$



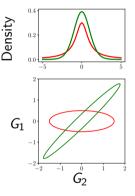
► Using a fixed pooling of neurons:



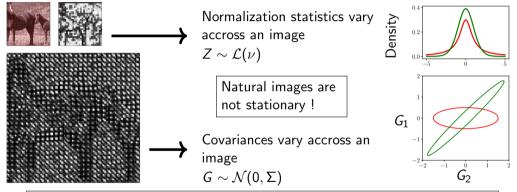
Normalization statistics vary accross an image $Z \sim \mathcal{L}(\nu)$

Natural images are not stationary !

Covariances vary accross an image $G \sim \mathcal{N}(0, \Sigma)$



Using a fixed pooling of neurons:

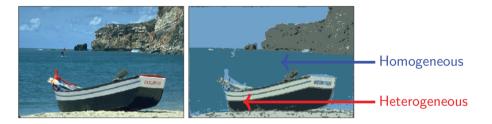


Two reasons for Mixture of GSMs:

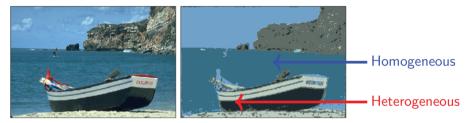
- ▶ Natural images are non-stationary (statistics vary across space)
- ▶ Flexible pooling seems necessary (for image stats and physiology)

Using wavelet feature vectors at a single pixel location we obtain:

Using wavelet feature vectors at a single pixel location we obtain:

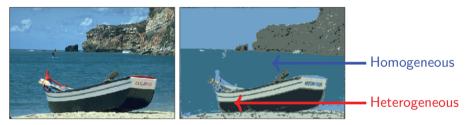


Using wavelet feature vectors at a single pixel location we obtain:



Decomposing the components:

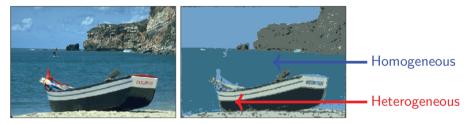
Using wavelet feature vectors at a single pixel location we obtain:



Decomposing the components:

▶ homogeneous: smoothing (~ proximity grouping), see our pre-prints: texture-based segmentation algorithm (Vacher, Mamassian, et al. 2019) + extension using hierarchical features (Vacher and Coen-Cagli 2019). Can achieve state-of-the-art performances.

Using wavelet feature vectors at a single pixel location we obtain:

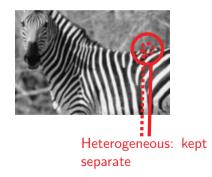


Decomposing the components:

▶ homogeneous: smoothing (~ proximity grouping), see our pre-prints: texture-based segmentation algorithm (Vacher, Mamassian, et al. 2019) + extension using hierarchical features (Vacher and Coen-Cagli 2019). Can achieve state-of-the-art performances.

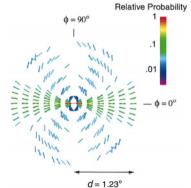
▶ heterogeneous: forcing the covariance structure (~ flexible pooling)

Heterogeneous component !

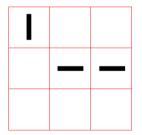


Heterogeneous component !

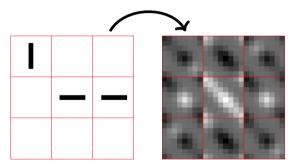
Edge co-occurrence (Geisler et al. 2001)



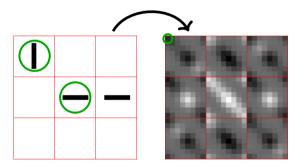
Heterogeneous component !



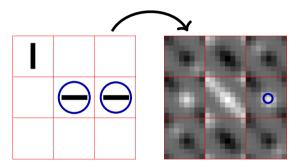
Heterogeneous component !



Heterogeneous component !

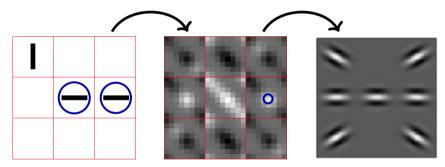


Heterogeneous component !



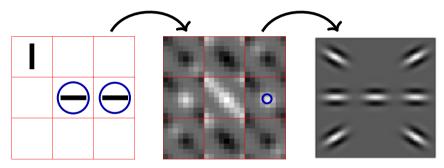
Heterogeneous component !

▶ Train a GSM on many natural images using center-surround feature vectors



▶ The covariance contains the association field structure !

Heterogeneous component !



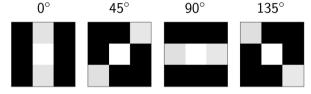
- ▶ The covariance contains the association field structure !
- \blacktriangleright However not strong enough to distinguish contour from non-contour \Rightarrow enforcing association field

 \blacktriangleright Forcing the association field structure \Rightarrow block diagonal covariance

- \blacktriangleright Forcing the association field structure \Rightarrow block diagonal covariance
- Equivalent to specify a linear subspace *i.e.* a basis \Rightarrow Principal Components (PCA)

- \blacktriangleright Forcing the association field structure \Rightarrow block diagonal covariance
- Equivalent to specify a linear subspace *i.e.* a basis \Rightarrow Principal Components (PCA)

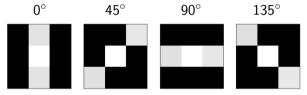
Principal component of the block diagonal covariance trained on human labeled edges only:



1

- \blacktriangleright Forcing the association field structure \Rightarrow block diagonal covariance
- Equivalent to specify a linear subspace *i.e.* a basis \Rightarrow Principal Components (PCA)

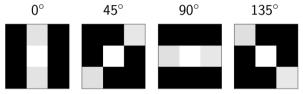
Principal component of the block diagonal covariance trained on human labeled edges only:



▶ In practice, it's better to project the feature vectors onto this subspace before training.

- \blacktriangleright Forcing the association field structure \Rightarrow block diagonal covariance
- Equivalent to specify a linear subspace *i.e.* a basis \Rightarrow Principal Components (PCA)

Principal component of the block diagonal covariance trained on human labeled edges only:

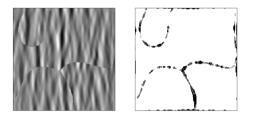


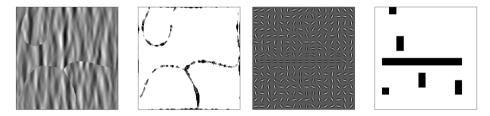
In practice, it's better to project the feature vectors onto this subspace before training.
 Similar to the template matching framework (Geisler 2018; Sebastian et al. 2017)

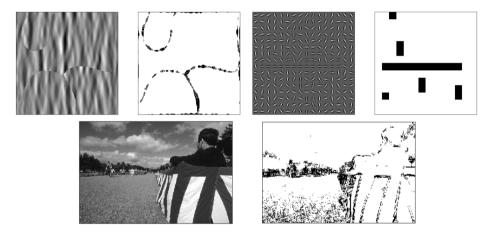
- \blacktriangleright Forcing the association field structure \Rightarrow block diagonal covariance
- Equivalent to specify a linear subspace *i.e.* a basis \Rightarrow Principal Components (PCA)

Principal component of the block diagonal covariance trained on human labeled edges only:

In practice, it's better to project the feature vectors onto this subspace before training.
Similar to the template matching framework (Geisler 2018; Sebastian et al. 2017)
Also, coherent with expected long edge receptive fields in the higher visual cortex (V2, V4) (Hosoya et al. 2015; Liu et al. 2016)







Conclusion

probabilistic model that accounts for image statistics, physiology and psychophysics
 need to improve the contour-based model and quantify its performance

Conclusion

- ▶ probabilistic model that accounts for image statistics, physiology and psychophysics
- need to improve the contour-based model and quantify its performance
- ▶ Next step: compare model predictions to human segmentation maps (see you next year!)

Conclusion

- ▶ probabilistic model that accounts for image statistics, physiology and psychophysics
- need to improve the contour-based model and quantify its performance
- ▶ Next step: compare model predictions to human segmentation maps (see you next year!)

Thanks to Pascal Mamassian and Ruben Coen-Cagli