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Image Segmentation vs Visual Segmentation

Great progress with deep learning:
» mostly supervised learning (~ top-down approach) £
» smart architecture but different from biological vi- ¢

sion
» performance oriented
» work as a black box
Visual segmentation is more involved !

» variable but consistent across humans

» top-down + bottom-up processing

Our goal is to craft an open box model with all the ingredient of vision !

X jonathan.vacher@einstein.yu.edu @ https://jonathanvacher.github.io 2 /13



Grouping and contours integration: a basis for visual segmentation ?
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Grouping and contours integration: a basis for visual segmentation ?

Contour perception (Field et al. 1993) Texture perception (Landy et al. 2001)

Artificial stimuli !

Tractable models and well-controlled experiments . ..
but how to generalize to natural images 7
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Toward an ideal observer model for visual segmentation

An ideal observer for visual segmentation of natural images !
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» To guide future model driven psychophysical experiments (ongoing work, not presented
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Toward an ideal observer model for visual segmentation

An ideal observer for visual segmentation of natural images !

» To guide future model driven psychophysical experiments (ongoing work, not presented
here)

Several constraints:

» Image statistics » Cortical features » Vision psychophysics
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Representation and non-Gaussian statistics of natural images

How are images represented ?
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Representation and non-Gaussian statistics of natural images

How are images represented ? = decomposition in a wavelet basis (receptive fields) (Bell
et al. 1997; Olshausen et al. 1996) » X = (X1,...,Xn)T = ({w1, 1), ..., {w,, I))T

What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)
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Representation and non-Gaussian statistics of natural images

How are images represented ? = decomposition in a wavelet basis (receptive fields) (Bell
et al. 1997; Olshausen et al. 1996) » X = (X1,..., X,)" = ((w1, 1), ..., (w,, I))T
What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)

Definition (Gaussian Scale Mixture)
Gaussian vector of visual features (G ~ N(0,X)) x Contrast between features (Z ~ L(v))

X =ZG.
Density of X knowing Z = z Histogram of x;
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Definition (Gaussian Scale Mixture)
Gaussian vector of visual features (G ~ N(0,X)) x Contrast between features (Z ~ L(v))

X =ZG.
Density of X; knowing Z = z Z: random variable
0.41
0.3
2
G (o] =z | 02
(]
L X
0.0 . . 0.0
-5 0 5 -5 0 5

P jonathan.vacher@einstein.yu.edu @ https://jonathanvacher.github.io 5 /13



Representation and non-Gaussian statistics of natural images

How are images represented ? = decomposition in a wavelet basis (receptive fields) (Bell
et al. 1997; Olshausen et al. 1996) » X = (X1,...,Xn)T = ({w1, 1), ..., {w,, I))T

What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000)

Definition (Gaussian Scale Mixture)

Gaussian vector of visual features (G ~ N(0,X)) x Contrast between features (Z ~ L(v))

X =ZG.
Density of X; knowing Z = z Z: random variable
0.41
0.3 » Heavy-tailed distribu-
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Gaussian Scale Mixture explains

filters positions

and orientations example of filters
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Gaussian Scale Mixture explains surround modulation in V1

Cell Model
filters positions (Cavaraughetal, 2002a)
and orientations example of filters @ N Taken from Coen- Cagll
2
11 o ; Dayan, et al. 2012
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Gaussian Scale Mixture explains surround modulation in V1

Cell Model
(Cavenaughetal, 20022)

Taken from Coen-Cagli,

filters positions

and orientations example of filters @ ]
2
| I | L™ § Dayan, et al. 2012
| 3% | T T Eos
! ]y g
2 of
center  surround
region region Dlameter deg Dnameler plxels
O— I'

GSM = normalization:
X = (X(c),x(s)), — (G(c ))

Xx(e)

\/V"i_ZkaXE
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Gaussian Scale Mixture explains surround modulation in V1

Cava'agdlalm
fl iti ”
2 ot example of fiters 3 Taken from Coen-Cagli,
LN - g Dayan, et al. 2012
l * | T ) 305
l l l L} ™ L] E
center  surround “ %
region region Dlameter deg Dlameler plxels
O— I'
GSM = normalization: Interpretation:
X = (X X)), G=(60), G) » G: vector of neurons responses (Coen-Cagli
and Schwartz 2013; Orban et al. 2016)
X(©) » Z: normalization (canonical across the brain

Gl

\/m Carandini et al. 2012)
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Gaussian Scale Mixture explains surround modulation in V1

Cell Model
(Cavenaughetal, 20022)

Taken from Coen-Cagli,

filters positions

and orientations example of filters @ ]
2
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GSM = normalization: Interpretation:

X — (X(c) X(s)) G = (G(c) G(s)) » G: vector of neurons responses (Coen-Cagli
and Schwartz 2013; Orbdn et al. 2016)
X(©) » Z: normalization (canonical across the brain

Gl

\/m Carandini et al. 2012)

‘» A normative model: vision is adapted to environmental statistics ! ‘
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Images statistics and V1 physiology suggest Mixtures of GSMs

Key question: How are neurons pooled together (i.e. normalized together) ?

Center+Surround or Center/Surround pooling
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Images statistics and V1 physiology suggest Mixtures of GSMs

Key question: How are neurons pooled together (i.e. normalized together) ?

Using a flexible pooling of neurons:
» qualitatively different image patches (Schwartz et al. 2006)

Center+Surround or Center/Surround pooling

Homogeneous:
pooled together
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Images statistics and V1 physiology suggest Mixtures of GSMs

Key question: How are neurons pooled together (i.e. normalized together) ?

Using a flexible pooling of neurons:
» qualitatively different image patches (Schwartz et al. 2006)
» better explanation of some neurons activity (Coen-Cagli, Kohn, et al. 2015)

Center+Surround or Center/Surround pooling

» Homogeneous: strong sur-
round suppression

» Heterogeneous: weak sur-
round suppression

Homogeneous: Heterogen.eous: kept
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Images statistics and V1 physiology suggest Mixtures of GSMs

Key question: How are neurons pooled together (i.e. normalized together) ?

Using a flexible pooling of neurons:
» qualitatively different image patches (Schwartz et al. 2006)
» better explanation of some neurons activity (Coen-Cagli, Kohn, et al. 2015)

Center+Surround or Center/Surround pooling

» Homogeneous: strong sur-
round suppression

» Heterogeneous: weak sur-
round suppression

» basis for segmentation ? » basis for contour detection ?

Homogeneous: Heterogen.eous: kept
pooled together separate
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Natural images statistics suggest Mixtures of GSMs

» Using a fixed pooling of neurons:
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Natural images statistics suggest Mixtures of GSMs

Normalization statistics vary

——————3 accross an image

Z ~ L(v)
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Natural images statistics suggest Mixtures of GSMs

» Using a fixed pooling of neurons:

X jonathan.vacher@einstein.yu.edu

Normalization statistics vary
accross an image
Z ~ L(v)

Covariances vary accross an
image

G ~N(0,%)
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Natural images statistics suggest Mixtures of GSMs

» Using a fixed pooling of neurons:

0.4

Normalization statistics vary
accross an image

Z ~ L(v)

0.2

Density

0.0

Covariances vary accross an -1
Image I 0 i 2

G ~N(0,Y) Gy
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Natural images statistics suggest Mixtures of GSMs

» Using a fixed pooling of neurons:

0.4

Normalization statistics vary
accross an image
Z ~ L(v)

0.2

Density

0.0

Natural images are
not stationary !

Covariances vary accross an -1
Image I 0 i 2

G ~N(0,Y) Gy
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Natural images statistics suggest Mixtures of GSMs

» Using a fixed pooling of neurons:

Normalization statistics vary >
accross an image g o
[
Z ~ E(I/) QO
=5 0 5

Natural images are
not stationary !

Covariances vary accross an -1
image -5 1 0 1 2
G ~ N(0,%) Go
Two reasons for Mixture of GSMs:

» Natural images are non-stationary (statistics vary across space)
» Flexible pooling seems necessary (for image stats and physiology)
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Naive Mixture of Gaussian Scale Mixtures for image segmentation

Using wavelet feature vectors at a single pixel location we obtain:

P jonathan.vacher@einstein.yu.edu @ https://jonathanvacher.github.io 9 /13



Naive Mixture of Gaussian Scale Mixtures for image segmentation

Using wavelet feature vectors at a single pixel location we obtain:

Homogeneous

Heterogeneous

P jonathan.vacher@einstein.yu.edu @ https://jonathanvacher.github.io 9 /13



Naive Mixture of Gaussian Scale Mixtures for image segmentation

Using wavelet feature vectors at a single pixel location we obtain:

Homogeneous

Heterogeneous

Decomposing the components:

P jonathan.vacher@einstein.yu.edu @ https://jonathanvacher.github.io 9 /13



Naive Mixture of Gaussian Scale Mixtures for image segmentation

Using wavelet feature vectors at a single pixel location we obtain:

Homogeneous

Heterogeneous

Decomposing the components:

» homogeneous: smoothing (~ proximity grouping), see our pre-prints: texture-based
segmentation algorithm (Vacher, Mamassian, et al. 2019) + extension using hierarchical
features (Vacher and Coen-Cagli 2019). Can achieve state-of-the-art performances.
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Naive Mixture of Gaussian Scale Mixtures for image segmentation

Using wavelet feature vectors at a single pixel location we obtain:

Homogeneous

Heterogeneous

Decomposing the components:

» homogeneous: smoothing (~ proximity grouping), see our pre-prints: texture-based
segmentation algorithm (Vacher, Mamassian, et al. 2019) + extension using hierarchical
features (Vacher and Coen-Cagli 2019). Can achieve state-of-the-art performances.

» heterogeneous: forcing the covariance structure (~ flexible pooling)
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Gaussian Scale Mixture: grouping and contour integration

Heterogeneous component !

Heterogen.eous: kept
separate
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Gaussian Scale Mixture: grouping and contour integration

Heterogeneous component !

Edge co-occurrence (Geisler et al. 2001)
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Gaussian Scale Mixture: grouping and contour integration

Heterogeneous component !

» Train a GSM on many natural images using center-surround feature vectors
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» The covariance contains the association field structure !
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Gaussian Scale Mixture: grouping and contour integration

Heterogeneous component !

» Train a GSM on many natural images using center-surround feature vectors

~

» The covariance contains the association field structure !
» However not strong enough to distinguish contour from non-contour = enforcing
association field
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Contour component vs “garbage” component
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» Forcing the association field structure = block diagonal covariance
» Equivalent to specify a linear subspace i.e. a basis = Principal Components (PCA)

Principal component of the bIock diagonal covariance trained on human labeled edges only:
135°

| L=

» In practice, it's better to project the feature vectors onto this subspace before training.

» Similar to the template matching framework (Geisler 2018; Sebastian et al. 2017)

» Also, coherent with expected long edge receptive fields in the higher visual cortex (V2, V4)
(Hosoya et al. 2015; Liu et al. 2016)
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Contour component vs “garbage” component: results

Encouraging results on different types of images:
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Conclusion

» probabilistic model that accounts for image statistics, physiology and psychophysics
» need to improve the contour-based model and quantify its performance
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Conclusion

» probabilistic model that accounts for image statistics, physiology and psychophysics
» need to improve the contour-based model and quantify its performance
» Next step: compare model predictions to human segmentation maps (see you next year!)

Thanks to Pascal Mamassian and Ruben Coen-Cagli
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