MEASURING HUMAN PROBABILISTIC SEGMENTATION MAPS

INTRODUCTION

Visual segmentation is a core function of biological vision:

- ▶ involves Gestalt principles, *e.g.* grouping by

<u>Feedforward models</u>: comparing the local summary statistics of low-level visual features [3, 4].

- A new task to measure segmentation maps:
- ► Ask the participant to decompose the image in K segments
- ► Show the image for 3 s
- to the same segment ?

(a)

to each segment, obtained with our protocol.

MODELS

(i) a non-parametric model
$$[\Theta = ((p_{\mathbf{i}})_{\mathbf{i}}, \alpha)]$$

 $p_{\mathbf{i},\mathbf{j}}(\Theta) = \alpha + (1 - 2\alpha) \langle p_{\mathbf{i}}, p_{\mathbf{j}} \rangle$ (NP)

▶ assumes the existence of underlying probability maps

(ii) a generative model $[\Theta = (\Lambda, \alpha)]$

$$p_{\mathbf{i},\mathbf{j}}(\Theta) = \alpha + (1 - 2\alpha) \langle p(x_{\mathbf{i}}|\mathbf{\Lambda}), p(x_{\mathbf{j}}|\mathbf{\Lambda}) \rangle$$
 (GM)

▶ assumes the probability maps are obtained via probabilistic inference

(iii) a discrimination model $[\Theta = (W, \mu, \sigma, \alpha)]$

$$p_{\mathbf{i},\mathbf{j}}(\Theta) = \alpha + (1 - 2\alpha)S_{\sigma,\mu}\left(\cos_W(x_{\mathbf{i}}, x_{\mathbf{j}})\right) \quad (FD)$$

► assumes that local features are directly compared

Jonathan Vacher (jonathan.vacher@einsteinmed.org), Pascal Mamassian, Ruben Coen-Cagli

manipulating the orientation and spatial frequency distributions of the textured segments changes the segmentation uncertainty – Figure 2

► the probabilistic inference model (GM) explains the data better than the feature discrimination model (FD) – Figure 3

variability of human segmentation correlates with image uncertainty – Figure 4

► GM captures the variability that is intrinsic to image uncertainty, differences with NP account for other factors such as measurement noise and inter-participants variability – Figure 4

variability is concentrated around contours, this effect is stronger for low uncertainty stimuli (blue) where contours are more spatially localized – Figure 5

 \triangleright we compared the fitted covariances Σ_k (*i.e.* the internal representation of the average participant) to the ground truth covariances of the stimuli

▶ participant covariances were narrower for lowuncertainty than for high-uncertainty stimuli, and qualitatively followed the ground truth despite

> Figure 6: Ground truth covariances from the stimuli (optimal) and the fitted covariances of GM.

Su	M
	hu: ncer
	vai
pr	str oba
	a r. atur
FU	INI
Thi (NI Fra	H/0
RE	EFF
[1]	J. V p. 1
[2]	р. 1 Р. F 227
[3]	M.
[4]	(10 J. F (20

Figure 4: Average entropy.

Figure 5: Average entropy for contour and non-contour areas obtained with NP model. Error bars: 99.7% conf. interval.

MARY

man variability correlates with image rtainty

riability is localized around contours

rong evidence that human segmentation is abilistic

new protocol that will allow studying ral image segmentation

DING

collaborative work is jointly funded by NIH CRCNS EY031166) in USA and ANR in

ERENCES

Wagemans et al. In: Psychological bulletin 138.6 (2012), 1172.

R. Roelfsema. In: Annu. Rev. Neurosci. 29 (2006), pp. 203–

S. Landy and J. R. Bergen. In: Vision research 31.4 991), pp. 679–691.

Freeman and E. P. Simoncelli. In: Nature neuroscience 14.9 011), p. 1195.