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INTRODUCTION

Visual segmentation is a core function of biological
vision:

involves (Gestalt principles, e.qg. grouping by
similarity, proximity and good continuation |1]
visual cortical neurons are sensitive to those
cues [2]

Feedforward models: comparing the local summary
statistics of low-level visual features |3, 4].

Alternative view: perceptual segmentation 1s

probabilistic.

To test that:
we propose a new protocol
segmentation maps and variability
we measured segmentation maps of composite
artificial images
we compared how these two models predict
human responses

tO measure

PROBABILISTIC SEGMENTATION MAPS: MEASURE AND RECONSTRUCTION

A new task to measure segmentation maps:

Ask the participant to decompose the image in
K segments

Show the image for 3 s

Run a sequence of M trials: does the pair belong
to the same segment 7

Divide

M times —
the
image ]
se ":nznts Sdme’
9 Y-N
up to
(a) 1000 ms 200 ms (b)

For any response model p; ;(©), the MLE estimate is
O = argéniﬂ > |kig = pig(©))° +reg. (1)

When © = ((p;);), the probability of response verifies
pi,;(©) = (pi, p3).

Segmentation map Di

—
-

I
=
00

=
»

<
N
Ayqeqoad

S
N

0.0

Figure 1: (a) Experiment trial layout. (b) Segmentation map of a natural image and probability of assignment

to each segment, obtained with our protocol.

MODELS
(i) a non-parametric model [© = ((p;);, @)]
Pij(©) = a+ (1 —2a)(pi, pj)

assumes the existence of underlying
probability maps

(12) a generative model |© = (A, )
Pij(©) = a+ (1 = 2a)(p(zi|A), p(x;|A)) (GM)

assumes the probability maps are
obtained via probabilistic inference

(131) a discrimination model |© = (W, u, o, )]
pi;(©) = a+ (1 —2a)5, , (cosw (zi, z5)) (FD)

assumes that local features
are directly compared

pr(x|A) ox exp ( 5
W/ Ak — (Ek -+ O'()I)_l

Sou() = (1 + exp (_% (log (ﬁ) - N)))—l

Pi,Pj ——— Dij;
(NP) pattern recog. judgement
comparison
pir: probability that pixel i belong a: lapse rate
to segment £
Ti; Tj ——— p(-|A) —> Pij
image features pattern recog. judgement

comparison

>, 0o. feature covariance and

rt AL )
internal noise

Ti, Ty —— cosw(-,:) —> DPi;

image features comparison  judgement

1, o: subjective eq.
and inverse sensitivity

RESULTS

uncertainty level

Figure 2: High and low
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manipulating the orientation and
spatial frequency distributions of
the textured segments changes the
segmentation uncertainty — Figure 2

the probabilistic inference model (GM)
explains the data better than the feature
discrimination model (FD) — Figure 3
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Figure 4: Average entropy.
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variability of human segmentation

uncertainty stimuli. correlates with image uncertainty — NC- Toncontonrs

Figure 4 034 C: contours i
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Figure 3: Fit quality (cross-

val. negative log-lkl, lower is
better). Rdm: chance level.

OPTIMAL OBSERVER

we compared the fitted covariances ¥y, (i.e. the
internal representation of the average participant)
to the ground truth covariances ot the stimuli

participant covariances were narrower for low-
uncertainty than for high-uncertainty stimuli, and
qualitatively followed the ground truth despite
being broader overall
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contours, this effect is stronger for low
uncertainty stimuli (blue) where contours
are more spatially localized — Figure 5

Figure 5: Average entropy for
contour and non-contour areas
obtained with NP model. Error

bars: 99.7% conf. interval.

SUMMARY

human variability correlates with image
uncertainty

variability is localized around contours

strong evidence that human segmentation is
probabilistic

a new protocol that will allow studying
natural image segmentation
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