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Summary Visual segmentation is a core function of biological vision, key to adaptive behavior in complex
environments. Foundational work identified Gestalt principles of segmentation, e.g. grouping by similarity, prox-
imity and good continuation [1], and revealed that visual cortical neurons are sensitive to those cues [2]. Early
models [3] inspired by the feedforward cortical architecture described texture-based human segmentation as the
process of comparing the summary statistics of low-level visual features across space. Indeed the summary statis-
tics representation is the most prominent model of naturalistic texture perception [4], yet it has been challenged
precisely because it does not fully capture the influence of segmentation [5].
Here we consider the alternative view that, due to image ambiguity and sensory noise, perceptual segmentation
requires probabilistic inference. This view is consistent with reports that humans combine multiple segmenta-
tion cues near-optimally in artificial displays [6, 7], and that Gestalt laws reflect optimization to natural image
statistics [8, 9, 10]. The probabilistic approach is also widespread in computer vision algorithms for unsupervised
segmentation, but has not been used to model perceptual segmentation.
We present new experiments that for the first time measure perceptual segmentation maps and their variability,
allowing us to test the probabilistic inference hypothesis, and compare it quantitatively to summary statistics mod-
els. We use composite textures, with segments characterized by different statistical relations between features.
Optimal probabilistic inference assigns pixels to segments by evaluating which of those relations better explains
the observed features (generative model), as opposed to comparing summary statistics at different locations (fea-
ture discrimination). We find the generative model best captures our data, and perceptual variability reflects image
uncertainty beyond sensory noise. We also demonstrate the approach on natural images, which will allow testing
more sophisticated segmentation algorithms.
Our results provide a normative explanation of human perceptual segmentation as probabilistic inference, and
demonstrate a novel framework to study perceptual segmentation of natural images.

Experimental Methods Participants were presented with images on a calibrated VPiXX monitor at 53 cm
viewing distance. To ensure that all participants performed the same task, prior to the start of a session they
were instructed that the image needed to be decomposed into a given number of segments K. A trial starts with
presentation of one image (size 8×8 deg) at the center of the screen for 3 s, followed by M sequences (Fig. 1a)
in which participants are asked to report with a button press if a pair of cued locations of the image belongs to the
same or different segments. The collected data allow to recover segment probabilistic maps and the segmentation
map as shown in figure 1b (see the method below).
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Figure 1: (a) Experiment trial layout. (b) Segmentation map of a natural image and probability of assignment to
each segment, obtained with our protocol.

Segmentation map reconstruction and models Each pair (i, j)∈P of tested locations lie on a N×N grid and
are tested Nt times. Stimuli are assumed to have K segments. The Nt participant responses for each pair r(nt)

i,j are
independent samples from a Bernoulli distribution with parameter pi,j(Θ) that depends on some model parameters
Θ. To recover the models parameters we solve the following regularized non-linear least square regression

Θ̂ = argmin
Θ

∑
(i,j)∈P

||ki,j− pi,j(Θ)||2 +λR1(Θ)+µR2(Θ) (1) where ki,j is the responses average, R1 and R2 are
regularizing functions (`2-norm and `2-norm of

discrete gradient) that reduce over-fitting in models (ii) and (iii) described below. When λ = µ = 0, the optimiza-
tion problem (1) is equivalent to maximum likelihood optimization. We consider three models:
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Figure 2: (a) High and low uncertainty stim-
uli. (b) Fit quality (cross-val. negative log-
likelihood, lower is better). Rdm: chance level.
(c) Average entropy. (d) Average entropy for
contour and non-contour areas obtained with
NP model. Error bars: 99.7% conf. interval.

(i) a non-parametric model that only assumes the existence of
underlying probability maps for the segments

pi,j(Θ) = α +(1−2α)〈pi, pj〉 with Θ = ((pi)i,α) , (NP)

where 〈, 〉 denotes the dot product, pik is probability that pixel i
belong to segment k with ∑k pik = 1 (see an example of proba-
bility maps on the right of figure 1b) and α is the lapse rate.
(ii) a generative model that further assumes the probability maps
are obtained via probabilistic inference from noisy observations

pi,j(Θ) = α +(1−2α)〈p(xi|Λ), p(xj|Λ)〉 (GM)

with Θ = (Λ,α), where (xi)i are oriented wavelet feature vec-

tors and pk(x|Λ) =
|Λk|exp(−0.5xTΛkx)

∑i |Λi|exp(−0.5xTΛix)
with Λk = (Σk +σ0I)−1.

The matrix Σk is the feature covariance (assumed diagonal in our
setting) and σ0 is the feature noise.
(iii) a feature discrimination model that does not require any un-
derlying probability maps, and only assumes that local features
are directly compared

pi,j(Θ) = α +(1−2α)Sσ ,µ

(
cosW (xi,xj)

)
(FD)

with Θ = (W,µ,σ ,α), where Sσ ,µ(u) = Φ
((

log
( u

1−u

)
−µ

)
/σ

)
with Φ being the sigmoid function, (µ,σ) the point of subjective equality and the threshold; and where cosW is a
cosine similarity index between the weighted component product of feature vectors xi and xj.
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Figure 3: Ground truth co-
variances from the stimuli
(optimal) and the fitted co-
variances of GM.

Results We fitted the three models on human data (4 participants) with low- and
high uncertainty stimuli (Fig. 2a) and measured fit quality using the cross-validated
negative log-likelihood. Figure 2b shows that probabilistic inference based on the in-
ternal model allowing for recognition and classification (GM) explains the data sig-
nificantly better than a direct feature comparison allowing for discrimination (FD).
We then tested whether the variability of human segmentation correlates with im-
age uncertainty, as expected in the probabilistic framework. We quantified the total
measured variability by the entropy of the segment probability maps recovered from
NP, and the portion of measured variability that is due to the intrinsic image uncer-
tainty using the maps recovered from GM. The difference between the two accounts
for other factors including measurement noise and differences between participants.
First, figure 2c shows that variability was significantly larger for more uncertain
stimuli (NP), and the increase was largely explained by the increase in image un-
certainty (GM). Second, the spatial distribution of variability was not uniform, but
rather concentrated around contours (Fig. 2d ), and the effect was stronger for low
uncertainty stimuli (blue) where contours are more spatially localized.
Lastly, to quantify how closely the subjects approximated the optimal observer, we

compared the fitted covariances Σ̂k (i.e. the internal representation of the average participant) to the ground
truth covariances of the stimuli (i.e. the optimal observer). The participants covariances were narrower for low-
uncertainty than for high-uncertainty stimuli, and qualitatively followed the ground truth (Fig. 3) despite being
broader overall.
Our work offers strong evidence that human segmentation is probabilistic, and demonstrates a new protocol that
will allow studying natural image segmentation.
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