
Flexibly Regularized Mixture Models and Application to

Image Segmentation

Jonathan Vachera,d, Claire Launaya, Ruben Coen-Caglia,b,c

aDept. of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris
Park Ave, Bronx, 10461, NY, USA

bDominick P. Purpura Dept. of Neuroscience, Albert Einstein College of Medicine, 1300 Morris
Park Ave, Bronx, 10461, NY, USA

cDept. of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, 1300 Morris
Park Ave, Bronx, 10461, NY, USA

dLaboratoire des Systèmes Perceptif, Département d’Études Cognitives, École Normale
Supérieure, PSL University, 24 rue Lhomond, Bâtiment Jaurès, 2éme

étage, Paris, 75005, , France

Abstract

Probabilistic finite mixture models are widely used for unsupervised clustering.
These models can often be improved by adapting them to the topology of the data.
For instance, in order to classify spatially adjacent data points similarly, it is com-
mon to introduce a Laplacian constraint on the posterior probability that each data
point belongs to a class. Alternatively, the mixing probabilities can be treated as
free parameters, while assuming Gauss-Markov or more complex priors to regularize
those mixing probabilities. However, these approaches are constrained by the shape
of the prior and often lead to complicated or intractable inference. Here, we propose
a new parametrization of the Dirichlet distribution to flexibly regularize the mixing
probabilities of over-parametrized mixture distributions. Using the Expectation-
Maximization algorithm, we show that our approach allows us to define any linear
update rule for the mixing probabilities, including spatial smoothing regularization
as a special case. We then show that this flexible design can be extended to share
class information between multiple mixture models. We apply our algorithm to
artificial and natural image segmentation tasks, and we provide quantitative and
qualitative comparison of the performance of Gaussian and Student-t mixtures on
the Berkeley Segmentation Dataset. We also demonstrate how to propagate class
information across the layers of deep convolutional neural networks in a probabilisti-
cally optimal way, suggesting a new interpretation for feedback signals in biological
visual systems. Our flexible approach can be easily generalized to adapt probabilistic
mixture models to arbitrary data topologies.

Keywords: unsupervised learning, mixture models, graphical model, factor graph,
image segmentation, convolutional neural networks

Email addresses: jonathan.vacher@ens.psl.eu (Jonathan Vacher),
claire.launay@einsteinmed.edu (Claire Launay), ruben.coen-cagli@einsteinmed.edu
(Ruben Coen-Cagli)

URL: https://jonathanvacher.github.io/ (Jonathan Vacher)

ar
X

iv
:1

90
5.

10
62

9v
3

 [
cs

.C
V

]
 8

 F
eb

 2
02

2

1. Introduction

Probabilistic finite mixture models are a class of statistical models that assume
the density of observed data is a weighted sum of simpler component distributions.
Finite mixture models aggregate data points by their statistical similarity and are
widely applied to unsupervised clustering problems [39]. Because these models do
not take into account topological dependencies between the observed data points,
they often result in scattered clusters of data points. In practice, clustering results
are often improved by accounting for the topology of the data [23, 65, 35, 21]. A
common approach to achieve this is to introduce a dependence of the class prob-
ability of one data point on the class of the other data points, either explicitly or
implicitly through structured priors that act effectively as a regularization term to
the likelihood function. Here we present a new formulation of finite probabilistic
mixtures that allows one to impose any topology on the class probabilities, and
that offers a computationally efficient optimization of the model’s parameters. To
illustrate our approach, we consider unsupervised segmentation of natural images: a
paradigmatic application of finite mixture models, in which accounting for the data
topology is necessary to reduce noise and spatial discontinuity in the segments.

Segmentation is the task of partitioning an image into multiple areas or segments,
or equivalently of assigning segment labels (i.e. mixture components, in the language
of finite mixtures) to each image pixel. Recent advances in deep learning models
allowed the development of successful strategies for supervised segmentation [40,
48, 36, 2, 8]. These approaches are trained with labeled images and are extremely
effective, in part because they learn object appearance which implicitly forces those
algorithms to respect the spatial topology of images, i.e. grouping together nearby
pixels. A known limitation of these supervised strategies is that they do not learn to
group pixels by their similarity and therefore generalize poorly to images of unseen
object categories.

Unsupervised learning is an abundant field gathering tree methods [53], dictio-
nary learning [58] and more [67]. In particular, many algorithms for unsupervised
segmentation have been developed, using different definitions of similarity between
pixels, such as k-means clustering [15], active contours models [27], graph cuts [6]
and fuzzy clustering [64]. Different from those algorithms, finite probabilistic mix-
ture models have two advantages that, as we show in this paper, can be leveraged
to develop segmentation algorithms that capture key aspects of biological vision
and also generalize to many other clustering problems. First, the mixture compo-
nents represent an explicit model of the statistical distribution of the data points
within each segment. Therefore, knowledge about the statistics of natural images
[25, 45, 62, 9, 10, 59] can help choosing an appropriate parametric family for the
component distributions. Second, the probabilistic formulation offers not just a
segmentation of the image, but also a measure of the uncertainty of the assign-
ment of pixels to labels, which can be used to combine optimally multiple cues
for segmentation. These properties are particularly important for modeling human
perceptual segmentation, because studies of biological visual processing have shown
that neurons in the visual cortex of the brain are sensitive to the statistical regu-
larities of natural images [25, 62, 9, 10], and that human perception uses multiple
segmentation cues tuned to those statistics [61, 18, 54, 38, 19] and combines them
near-optimally [49].

Given the topology of images, existing probabilistic mixture models for segmenta-

2

tion have been extended to encourage the assignment of spatially neighboring pixels
to the same mixture component. Many authors have proposed to add a penalty
on the posterior class probabilities to enforce their local similarity [35, 21, 23, 65].
Other authors have proposed mixture models in which the prior mixing probabilities
depend on the index of the sample (e.g. the spatial position of the pixel). The prob-
lem with this approach is that, because the mixing probabilities are parameters that
have to be learned, it increases the number of model parameters way above the num-
ber of samples. A commonly adopted solution is to strongly regularize the mixing
probabilities, by accounting for the topology of the dataset. For example, in order
to favor grouping of neighboring samples Blei and Frazier [3] have developed the dis-
tance dependent Chinese restaurant process (ddCRP). The ddCRP has been further
extended to perform image segmentation using a region-based hierarchical represen-
tation [22]. Similarly in a series of papers, Nikou et al. have proposed to consider
the mixing probabilities as Gauss-Markov random fields either directly [51, 43, 52]
or hierarchically [44]. More recently and using comparable ideas, Sun et al. have
introduced Location Dependent Dirichlet Processes (LDDP) [57] which use expo-
nential of Gaussian processes in combination with Dirichlet processes to describe
class distributions.

Our work builds on the tools and concepts used by Sun et al. [57] and Nikou et
al. [44], and extends their formulations to address two important limitations. First,
those approaches do not allow any flexibility in defining how information about
segment assignment is combined across pixels. Furthermore, during inference, this
combination is typically nonlinear leading to computationally intensive, and some-
times unstable, optimization. Second, the use of ad-hoc solutions for spatial reg-
ularization does not provide a clear route for extending those models to different
topologies. This is important not only for other clustering problems defined, for
instance, on temporal sequences or tree graphs, but also for image segmentation
itself: in natural images, there is another topology associated with the hierarchy
of visual features, e.g. the hidden units at different layers of deep neural networks
(DNN). It is well-known from image style-transfer applications [26] that shallow lay-
ers convey texture information while the deep layers convey geometric and structural
information. Combining that information in a systematic way could improve image
segmentation. Studies on human perception have shown that humans are sensitive
to segmentation cues at several levels [61], that they can combine segmentation in-
formation from multiple levels near-optimally [49], and that high level features, like
objects, strongly affect segmentation in human observers [46, 42]. Related work
in computer vision has demonstrated that recurrent and feedback signals between
feature levels [34, 28, 30] are crucial for perceptual grouping and segmentation. The
framework we introduce here extends naturally to this hierarchical structure, and
allows for optimal weighting of recurrence and feedback signals.

In the remainder of Section 1, we first briefly recap the formulation of probabilis-
tic mixture models and the EM algorithm used for parameter optimization. Then,
as they are closely related to our work, we describe the approaches of Sun et al. [57]
and Nikou et al. [44] which account for image topology by regularizing the class
probabilities. We next introduce our formulation and explain its advantages over
those approaches. In Section 2 we provide full details on our model for the class
probabilities, which requires a directed graphical model with loops and a specific
prior parametrization, and we state formally the theoretical results that come with

3

it. Then, we show how our formulation can be readily extended to combine multiple
mixture models through their mixing probabilities, thus accounting for hierarchical
structure. In Section 3, we illustrate the performance of our model in synthetic and
natural image segmentation tasks.

Notations. We use the following notations. Integers H, N , K and D denote respec-
tively, the number of layers, the number of samples, the number of classes and the
dimension. A random variable is denoted by a capital letter X. The probability
density function of X is denoted PX while xn denotes a sample. The set ∆K repre-
sents the K-dimensional simplex. A bold letter (lowercase or capital) is a collection
of K variables b = (b1, . . . , bK). A set of N samples (xn)16n6N is shortened by (xn)n
or x.. This notation also holds for random variables.

1.1. Probabilistic mixture models and Expectation-Maximization

A sample xn ∈ RD is a D-dimensional feature vector which is a realization of
a random vector Xn. When the distribution of Xn is a weighted sum of K > 0
distributions, we say that Xn follows a mixture distribution with K components.
Each random variable Xn is associated with a discrete latent random variable Cn

denoting its class among the K components.
Specifically, we consider mixtures of parametric distributions, i.e. for all k ∈

{1, . . . , K}, the distribution of any observed variable with class Cn = k belongs to
the same parametric family (Gaussian, Exponential, . . .). In the following, we write
the distribution parameter (or set of parameters) associated with the class k as ak
and the probability of a sample xn given its class Cn = k as PX(k)(xn; ak).

Standard probabilistic mixture models [39] assume that the latent random vari-
ables (Cn)n are i.i.d. and follow a multinomial distribution, i.e. for all n ∈ {1, . . . , N},
for all k ∈ {1, . . . , K},

PCn(k) = pk, (1)

where p = (p1, . . . , pK) ∈ ∆K is the vector of class probabilities, also called the
mixing probabilities. Thus, given the mixing probabilities p and the collection of
distribution parameters a = (a1, . . . , aK), the density function writes

PX|P,A(x|p, a) =
K∑
k=1

pkPX(k)(x; ak). (2)

The graphical model of those mixture models is shown in Figure 1a.
Given samples (xn)n, the Maximum Likelihood (ML) or Maximum A Posteri-

ori (MAP) estimates of the model parameters θ = (p, a) can be found using the
Expectation-Maximization (EM) algorithm. The EM algorithm is an iterative op-
timization method which proceeds in two steps: (i) the expectation step (E-step)
which aims at estimating the objective function knowing previous parameter esti-
mates; (ii) the maximization step (M-step) which aims at maximizing the objective
function estimated during the E-step in order to update the previous parameter
estimates.

One approach to arrive at these two-steps is to consider the likelihood of the

4

samples completed by their class ((xn, Cn))n i.e.

` (p, a; (xn, Cn)n) = ln

(
N∏

n=1

PX,C|P,A(xn, Cn|p; a)

)

= ln

(
N∏

n=1

K∏
k=1

(pkPX(k)(xn; ak))1k(Cn)

)
(3)

where

1j(i) =

{
1 if i = j,

0 otherwise.
(4)

Such a completion turns the sum in Equation (2) into a product which in turn will
behave nicely when considering the log-likelihood. Indeed Equation (3) becomes

` (p, a; (xn, Cn)n) =
N∑

n=1

K∑
k=1

1k(Cn) ln(pk) + 1k(Cn) ln(PX(k)(xn; ak)). (5)

The cost of this completion is to introduce unknown class variables (Cn)n which
makes the log-likelihood ` a random variable preventing its direct maximization.
This is solved by the two steps of the EM algorithm. Given the previous parameter
estimates θ(t) =

(
p(t), a(t)

)
, the E-step estimates the completed-data log-likelihood

Q by taking expectation of ` knowing θ(t)

Q(θ,θ(t)) = ECn|(Xn)n,θ

(
` (p, a; (xn, Cn)n) |(xn)n,θ

(t)
)
. (6)

In practice, the E-step amounts to computing for all n ∈ {1, . . . , N}, for all k ∈
{1, . . . , K}, the posterior class probabilities

τ
(t)
n,k = PCn|Xn,θ(k|xn,θ(t)) = ECn|Xn,θ(1k(Cn)|xn,θ(t)). (7)

Then, the M-step updates the previous parameter estimates by maximizing Q i.e.

θ(t+1) = argmax
θ

Q(θ,θ(t)). (8)

With an appropriate choice of the component distributions, for instance Gaussian or
Exponential, closed-form maximum likelihood estimates of the component parame-
ters a are available. In addition, the update rule for the mixing probabilities does
not depend on the choice of the component distribution and it writes

p
(t+1)
k =

1

N

N∑
n=1

τ
(t)
n,k. (9)

This procedure was introduced by Dempster et al. [14] which proved that the
likelihood is non-decreasing at each iteration of the EM algorithm. There are no
general guarantees that the sequence {θ(t)} converges to a maximum likelihood
estimator. Under some conditions verified by many models, the EM algorithm
converges to a stationary value of the complete-data log-likelihood function while
the convergence of the sequence {θ(t)} to a point θ∗ requires stronger conditions
[63, 7].

5

1.2. Previous work and contributions
As explained above, an important limitation of mixture models is that they

assume independence between samples, and therefore ignore the underlying topology
of the dataset. For instance, considering image segmentation, when the samples are
pixels of an image, the location of a pixel and the classes assigned to its neighbors
may provide information about the class assignment of that pixel. We consider the
approach in which the mixing probabilities depend on the index n of the sample
(i.e. p becomes pn), and therefore the mixture model writes

PXn|Pn,A(x|pn, a) =
K∑
k=1

pn,kPX(k)(x; ak), (10)

where for all n ∈ {1, . . . , N}, pn ∈ ∆K .
The model now is over-parametrized, but the topology of the data can be ex-

ploited to regularize the mixing probabilities. Specifically, our work is closely related
to the approaches of Sun et al. [57] and Nikou et al. [44]. Therefore, in the following
we summarize their work before introducing ours.

Preliminary definitions. First, we say that a random variable R follows a Gamma
distribution knowing the parameter S when its density writes

PR|S(r|s) =
rs−1 exp (−r)

Γ(s)
. (11)

We denote R ∼ G(S). Then, we say that a random vector R ∈ ∆K follows a
Dirichlet distribution knowing the parameters S when its density writes

PR|S(r|s) =
Γ
(∑K

k=1 sk

)
∏K

k=1 Γ(sk)

K∏
k=1

rsk−1k . (12)

We denote R ∼ D(S). Then, a function F : R2 −→ R is a Gaussian process with
mean µ : R2 −→ R and covariance Σ : R2 × R2 −→ R when for any N > 0 and
any locations (l1, . . . , lN) ∈ R2×N , (F (ln))n ∼ N

(
µ̄, Σ̄

)
where µ̄ = (µ(ln))n and

Σ̄ = (Σ(lm, ln))m,n. We denote F ∼ GP(µ,Σ). The Gaussian process F is a Gauss-
Markov process when for all (m,n) ∈ {1, . . . , N}2 such that lm /∈ Cn, Σ−1(lm, ln) = 0
where Cn is a neighborhood of ln. We denote F ∼ GMP(µ,Σ). The Gaussian
process F is stationary when µ is constant and Σ(u, v) = Σ(u − v). We denote
F ∼ SGP(µ,Σ).

Location-dependent Dirichlet Process. In the work of Sun et al. [57] the mixing
probabilities are modeled as:

Pn,k =
Qk exp (Fk(ln))∑K
i=1Qi exp (Fi(ln))

(13)

where
∀k ∈ {1, . . . , K}, Qk ∼ G(b) and Fk ∼ SGP(0,Σ)

with Pn,k = Pk(ln) and b > 0. The associated graphical model is shown in Figure 1b.
In the work of Sun et al., model training is achieved using variational inference.

However, for the sake of comparison we have derived the EM update rule for the mix-
ing probabilities (Table 1, left). These equations highlight how information about
neighboring pixels is combined to obtain mixing probabilities. This formulation,
involving additional variables, is more complex and difficult to interpret than ours.

6

p

Cn

Xn

Cm

Xm

a

(a) Standard
mixture model.

Fn

Pn

Cn

Xn

Fm

Pm

Cm

Xm

Q

a

(b) Location Depen-
dent Dirichlet Pro-
cess

Bn

Pn

Cn

Xn

Bm

Pm

Cm

Xm

a

(c) Spatially
varying mixture
models.

BnPn

Cn

Xn

Bm Pm

Cm

Xm

a

(d) Proposed mixture model.

Figure 1: Probabilistic graphical models corresponding to previously proposed mixture models (a-
c) and our model (d) for two observed variables Xn and Xm. Circles represent random variables
(gray: observed; white: latent), uncircled letters represent parameters, directed and undirected edges
represent probabilistic dependencies. The variables are described in the main text.

Spatially-varying mixtures. In the work of Nikou et al. [44] the mixing probabilities
are modeled as

Pn = P(ln) ∼ D(B(ln)) where ∀k ∈ {1, . . . , K}, Bk ∼ GMP(0,Σk). (14)

The associated graphical model is shown in Figure 1c. The EM update rule for the
mixing probabilities consists in solving a third order polynomial equation (Table 1,
middle), which can cause numerical instabilities.

Our model: Flexibly regularized mixture models (FlexMM). We assume that the ran-
dom vector Pn follows a Dirichlet distribution whose parameter Bn ∈ RK depends
linearly on the classes (Cn)n. In other words, the Dirichlet parameter pulls informa-
tion from the classes of other samples to regularize Pn. Our model for the mixing
probabilities writes, for all n ∈ {1, . . . , N},

Pn = P(ln) ∼ D(B(ln)) (15)

where
∀k ∈ {1, . . . , K}, Bk(ln) = un,k((1k(Cn))n)− 1k(Cn) + 1 (16)

with un,k : RN −→ R is a linear function such that un,k
(
[0,+∞[N

)
⊂ R+. The

graphical model associated with our model is shown in Figure 1d.
Importantly, by defining parameters B this way, the update rule depends linearly

on the posterior class probabilities, in contrast to [57, 44], and is entirely determined
by the functions un,k (Table 1, right; see Section 2 for the derivation). These func-
tions are defined according to the data on which one wants to apply the model,
and its underlying structure, as they determine how information can be combined
and propagated between data points throughout the iterations of the EM algorithm.
For instance, if the model is applied to the pixels of an image, one usually wants to
combine information obtained from neighboring pixels. If the dataset gathers words

7

in sentences, it can make sense to combine information from neighboring words but
also from the importance or the position of the word in the sentence. Indeed, de-
pending on the space on which is defined the dataset, functions un,k can be chosen to
favor the grouping of points in the sense of an adapted distance, entirely determined
by the user. Some specific examples and an application to image segmentation are
provided in Sections 2 and 3.

Therefore, our formulation has the advantage of guaranteeing linear updates
while maintaining full flexibility in how class information is integrated across sam-
ples. Yet, this comes at the cost of introducing loops in the graphical model. In
the following section, first, we justify that our loopy model is well-defined, providing
a detailed description, and we state formally the theoretical results which comes
with it. Then, we show how the flexible update rule allows one to combine multiple
mixture models through their mixing probabilities.

Sun et al. [57] Nikou et al. [44] Ours

M
ix

in
g

p
ro

b
ab

il
it

ie
s

u
p

d
at

e

q
(t+1)
k = b− 1 +

N∑
n=1

τ
(t)
n,k − p

(t)
n,k

f
(t+1)
·,k = Σ̄(τ

(t)
·,k − p

(t)
·,k)

p
(t+1)
n,k =

q
(t+1)
k exp

(
f
(t+1)
n,k

)
∑K

i=1 q
(t+1)
i exp

(
f
(t+1)
n,i

)

p
(t+1)
n,k depends

on the roots of
3rd order poly-
nomials which
depend on the
posterior class
probabilities
τ
(t)
n,k.

p
(t+1)
n,k =

un,k(τ
(t)
·,k)∑K

k=1 un,k(τ
(t)
·,k)

Table 1: Comparison of the mixing probabilities update rule of our model to the ones of previous
models. We use the notation pn,k = pk(ln). These update rules should be compared to the standard

mixture update rule given in the previous subsection: p
(t+1)
k = 1

N

∑N
n=1 τ

(t)
n,k.

2. Linear Update of the Mixing Probabilities

2.1. Single mixture model

As explained in the previous section, the method we propose to regularize the
over-parametrized mixing probabilities pn introduces loops in our graphical model
(Figure 1d). Such loops could be problematic as they may be inconsistent or prevent
one from defining a joint distribution. To circumvent these issues, we identify our
directed graph with a factor graph.

A variant of the EM algorithm, called the factor graph EM algorithm [16], was
developed to obtain ML or MAP estimates for models associated with a graph
containing cycles or loops. Factor graphs [20, 41] are graphical models introduced
to explicitly represent arbitrary factorization of the joint distribution. A factor graph
has two type of nodes. Variables, either known or hidden, are often represented by
letters in circles and factors, which define relations between variables, are represented
by black squares and are associated with factor functions given in the factorization.
Eckford and Pasupathy [16, 17] state that this EM algorithm on factor graphs is able
to break cycles and infer the parameters of the model. The key of this strategy is
to extract from the initial factor graph two subgraphs. The first subgraph contains
the hidden random variables of the model that are estimated during the E-step,

8

and it is therefore called the E-step factor graph. The second subgraph contains
the parameters of the model that are estimated during the M-step of the algorithm,
and is called the M-step factor graph. Note that in that case, each step of the EM
algorithm can also be seen as local message computations [13, 12], which are at the
core of message passing algorithms. Eckford [17] shows that if both subgraphs are
cycle-free, then the EM algorithm can be implemented exactly. Eckford [17] and
Dauwels et al. [13] show that using a likelihood function computed from the model,
one can define the function Q adapted to the factor graph that will be computed
and maximized iteratively during the EM algorithm.

Thanks to the Hammersley-Clifford theorem [29], we know that the joint distri-
bution of the hidden variables C, B, the observations X and the parameters p, a is
proportional to the product of potential functions on the cliques of the associated
graph. We choose the following factorization associated to our model

PX,C,B,P,A((xn)n, (Cn)n, (Bn)n, (pn)n, a)

=
1

Z
fA(a)

N∏
n=1

fX,C,A,P(xn, Cn, a,pn)fP,B(pn,Bn)fB,(Cn)n(Bn, (Cn)n),

(17)

where the potential functions are chosen to be equal to the following conditional
probabilities,

fX,C,A,P(xn, Cn, a,pn) = PX,C|A,P(xn, Cn|a,pn) (18)

fP,B(pn,Bn) = PP|B(pn|Bn) (19)

fB,(Cn)n(Bn, (Cn)n) = PB|(Cn)n(Bn|(Cn)n) (20)

fA(a) = PA(a), (21)

and where Z is normalization constant. Figure 2a presents the factor graph associ-
ated with this factorization and our initial model, using the same notations as the
seminal papers on factor graphs [31, 20]. The E-step of the EM algorithm computes
an expectation given the parameters estimated during the previous iteration, which
correspond to an implicit inference of the hidden variables (Cn)n and (Bn)n. The
M-step corresponds to the maximization of this expectation to obtain new estimates
for p and a. Given the factorization and the computations done during the E-step
and the M-step, both subgraphs associated with each step of the EM algorithm
are presented in Figure 2. Note that there is no loop in either subgraph. Thus,
the proofs in [16, 13] still hold and the EM algorithm is guaranteed to iteratively
increase the incomplete log-posterior.

The estimation of the component parameter a is independent from the estima-
tion of the mixing probabilities pn. Therefore, any prior PA can be used for the
component parameters a. In the EM approach, we consider the joint probability of

9

Bn Bm

Cn Cm

Xn Xm

aPn Pm

(a) Initial factor graph

Bn Bm

Cn Cm

Xn Xm

aPn Pm

(b) E-factor graph

Bn Bm

Cn Cm

Xn Xm

aPn Pm

(c) M-factor graph

Figure 2: Factor graphs associated with our model, the factorization defined in (17) and with each
step of the EM algorithm. The graphs connect each factor node (black squares) to the corresponding
variables (gray circles: observed variable; white circles: latent variables) as given in Equations (17-
21). Arrows indicate conditional probabilities.

xn and Cn. Hence, the log-posterior distribution of (p, a) writes

`(p, a;(xn, Cn,Bn)n) = ln(PP,A|X,C,B(p, a|(xn)n, (Cn)n, (Bn)n))

= ln(PX,C,B,P,A((xn)n, (Cn)n, (Bn)n, (pn)n, a))− ln(PX,C,B((xn)n, (Cn)n, (Bn)n)

=
N∑

n=1

ln(PX,C|P,A(xn, Cn|pn, a)) + ln(PP|B(pn|Bn)) + ln(PBn|(Cn)n(Bn|(Cn)n))

(22)

+ ln(PA(a))− ln(PX,C,B((xn)n, (Cn)n, (Bn)n)− ln(Z).

We recall that we only observe realizations of X. Therefore in the EM approach,
the unobserved pixel classes (Cn)n and prior parameters (Bn)n will be estimated by
taking the expectation during the E-step. In this mixture model, the expression of
PX,C|P,A used in Equation (3) still holds. Then,

PX,C|P,A(xn, Cn|pn; a) =
K∏
k=1

(pn,kPX(k)(xn; ak))1k(Cn) (23)

In addition, we assume that Bn is entirely characterized by the classes (Cn)n i.e. it
has the following Dirac density

PBn|(Cn)n(B|(Cn)n) = δvn(11(C·),...,1K(C·))(B), (24)

where δx(y) is the Dirac delta distribution and where vn : RN×K 7→ RK is a
linear function. This amounts to consider that Bn is equal in distribution to
vn (11(C·), . . . ,1K(C·)). In particular, when vn (11(C·), . . . ,1K(C·)) = (un,1(11(C·))−
11(Cn) + 1, . . . , un,K(1K(C·)) − 1K(Cn) + 1), this comes down to assume that the
distribution of the probabilistic maps Pn is given by Equation (15) with parameters

10

given by Equation (16). Finally the log-posterior can be simplified as

`(p, a;(xn, Cn,Bn)n) =
N∑

n=1

K∑
k=1

1k(Cn)
[

ln (pn,k) + ln (PX(k)(xn; ak))
]

+ ln(PA(a))

+ ln
(
PP|B

(
pn

∣∣∣vn (11(C·), . . . ,1K(C·))
))

+W ((xn, Cn,Bn)n), (25)

where W is the function that gathers all the terms of ` that do not depend on p or a.
From there assuming that PP|B is a Dirichlet distribution as given by Equation (12),
it is possible to derive a custom update rule for the mixing probabilities which is
applicable to any mixture model as stated in the following proposition.

Proposition 1. For all (n, k) ∈ ΩN,K = {1, . . . , N}× {1, . . . , K}, let un,k : RN −→
R be any linear function such that un,k

(
[0,+∞[N

)
⊂ R+. If vn (11(C·), . . . ,1K(C·)) =

(un,1(11(C·))− 11(Cn) + 1, . . . , un,K(1K(C·))− 1K(Cn) + 1), then, the mixing prob-
ability updates are

∀(n, k) ∈ ΩN,K , p
(t+1)
n,k =

un,k(τ
(t)
·,k)∑K

k=1 un,k(τ
(t)
·,k)

. (26)

where τ
(t)
n,k = PCn|Xn,Θ(k|xn,θ(t)) is the kth component posterior probability of sample

xn computed at the previous E-step and θ(t) is the previous parameter estimate.

Proof. The proof has two steps: (i) take the conditional expectation of the log-
posterior (25) knowing the data and the parameters estimated at the last M-step

and use the equality E((Bn,k − 1 + 1k(Cn))|(xn)n,θ
(t)) = un,k(τ

(t)
·,k); (ii) write the

Karush–Kuhn–Tucker condition [5] for pn,k. See supplementary section Appendix
B for details.

Defining the distribution of the Dirichlet parameters B as in (24) enables to adapt
the way spatial information is propagated, given a set of linear functions (un,k)n,k. It
also leads to linear update equations (26) which was our initial goal. These functions
can be defined according to the application of the model (such as image segmenta-
tion, text categorization, scene classification) and may also depend on the position
of the sample they are applied to. In particular, when un,k(τ·,k) =

∑
m τm,k/N , the

update corresponds to the standard mixture model. When un,k(τ·,k) = τn,k, the mix-
ing probabilities will be equal to the component posterior probability of xn. Finally,
when un,k(τ·,k) = G ∗ τ.,k |n where G is any averaging kernel and ∗ is a convolution
operator, both adapted to the topology of indexes n, the update corresponds to a lo-
cal average of the posterior as has been used recently for spatial smoothing [60, 23].
Despite the reformulation of our model using factor graphs, we are still able to
compute the quantities needed to perform an EM algorithm and we can prove the
following result.

Proposition 2. The EM algorithm applied to this model is an ascent algorithm,
meaning that at each iteration t + 1, the incomplete log-posterior increases as the
parameters are updated:

lnPP,A|X(p(t+1), a(t+1)|(xn)n) > lnPP,A|X(p(t), a(t)|(xn)n).

11

B(1)
nP(1)

n

C(1)
n

X (1)
n

B(1)
m P(1)

m

C(1)
m

X (1)
m

a(1)

B(2)
nP(2)

n

C(2)
n

X (2)
n

B(2)
m P(2)

m

C(2)
m

X (2)
m

a(2)

B(3)
nP(3)

n

C(3)
n

X (3)
n

B(3)
m P(3)

m

C(3)
m

X (3)
m

a(3)

Figure 3: Mixture model for two observed variables Xn and Xm and 3 layers. Our model enables
the combination of the 3 mixtures models, each one associated to a layer. In this graph, we focus

on the conditional dependencies of B
(2)
n which are determined by K×H linear functions (u

(h)
n,k)k,h.

The proof of this proposition adapts the proof of the monotone behavior of
log-likelihood of the usual EM algorithm [14] to our model, it can be found in
Supplementary Section Appendix C. Similarly, the convergence properties of the
EM algorithm given in [63] remain valid in our framework, thus the log-posterior
function converges to a stationary point.

2.2. Combining mixture models

Real datasets are often composed of multiple feature vectors that have differ-
ent dimensionality and different number of samples. In addition, multiple feature
vectors can be organized according to a natural topology, e.g. the activations at
different layers of DNNs correspond to different feature vectors and are organized
hierarchically. In such settings, a simple approach could be to train several mixture
models independently. However, doing so would ignore the topological organization
of the feature vectors, and furthermore the interchangeability of mixture compo-
nents will prevent to gather the results without relabelling. Relabelling is a costly
(non-polynomial) counting problem.

We propose here to alleviate these issues by sharing class information across dif-
ferent mixture models, using a strategy similar to the one introduced in the previous
Section. The idea is that instead of training multiple mixture models independently,
these can be trained in parallel and regularize each other through the mixing prob-
abilities (see Figure 3). As we show below, the update of the mixing probabilities

is linear and can be fully specified through the v
(h)
n function, allowing one to decide

how to combine the class information from different mixture models.
We assume that each data sample is associated with a collection of features

vectors (x
(h)
n)h∈{1,...,H} indexed by the index h. In the case of images, h denotes the

DNN layers which contain the activation vector to an image at each pixel location
ln. Again, the Dirichlet parameters B

(h)
n follow a Dirac distribution

P
B

(h)
n |(C

(h)
n)n,h

(B|(C(h)
n)n,h) = δ

v
(h)
n

(
11(C

(1)
·),...,11(C

(H)
·),...,1K(C

(1)
·),...,1K(C

(H)
·)

)(B) (27)

where v
(h)
n : RN×H×K 7→ RK is a linear function. As such, this function will set the

Dirichlet parameters so that it will regularize the mixing probability p
(h)
n with the

class information of the neighboring samples and layers.
As in the previous section, we estimate the parameters of our model using MAP

inference
(â, p̂) = argmax

(a,p)

`
(
p, a; (x(h)n , C(h)

n ,B(h)
n)n,h

)
(28)

12

where

`(p, a; (x(h)n , C(h)
n ,B(h)

n)n,h) = ln
(
PA,P|X,C,B(a,p|(x(h)n)n,h, (C

(h)
n)n,h, (B

(h)
n)n,h)

)
.

(29)

Assuming additionally that the feature and class variables (x
(h)
n , C

(h)
n)h are indepen-

dent knowing (p
(h)
n , a(h))h and that the mixing probabilities (p

(h)
n)h are independent

knowing (B
(h)
n)h, the posterior in Equation (29) can be factorized in a very similar

way as in the previous section. Indeed, the log-posterior writes

`(p, a;(x(h)n , C(h)
n ,B(h)

n)n,h) =
N∑

n=1

H∑
h=1

K∑
k=1

1k(C(h)
n)
[

ln
(
p
(h)
n,k

)
+ ln

(
PX(h,k)(x(h)n ; a

(h)
k)
)]

+ ln
(
PP|B

(
p(h)
n

∣∣∣v(h)
n

(
11(C

(1)
·), . . . ,11(C

(H)
·), . . . ,1K(C(1)

·), . . . ,1K(C(H)
·)

)))
+

H∑
h=1

PA(a(h)) +W ((xhn, C
h
n ,B

h
n)n,h), (30)

where W is the function gathering the quantities in ` that do not depend on p or
a. As in Proposition 1, we can derive linear update rules for the probability maps
in the EM algorithm as detailed in the following proposition.

Proposition 3. For all (n, k, h) ∈ ΩN,K,H = {1, . . . , N}×{1, . . . , K}×{1, . . . , H},
let u

(h)
n,k : RN −→ R be any linear function such that u

(h)
n,k

(
[0,+∞[NH

)
⊂ R+. If

v(h)
n (11(C

(1)
·), . . . ,11(C

(H)
·), . . . ,1K(C(1)

·), . . . ,1K(C(H)
·))

= (u
(h)
n,1(11(C

(1)
·), . . . ,11(C

(H)
·))− 11(C

(h)
·) + 1, . . . ,

u
(h)
n,K(1K(C(1)

·), . . . ,1K(C(H)
·))− 1K(C(h)

·) + 1)

then, the mixing probability updates of layer h are

∀(n, k, h) ∈ ΩN,K,H , p
(t+1,h)
n,k =

u
(h)
n,k(τ

(t,1)
·,k , . . . , τ

(t,H)
·,k)∑K

k=1 u
(h)
n,k(τ

(t,1)
·,k , . . . , τ

(t,H)
·,k)

(31)

where τ
(t,h)
n,k = P

C
(h)
n |X

(h)
n ,Θ

(k|x(h)n ,θ(t,h)) is the kth component posterior probability of

sample x
(h)
n at the previous E-step and θ(t,h) is the previous parameter estimate.

The proof of this proposition is similar to the proof of Proposition 1 and can be
found in supplementary section Appendix B. Moreover, it is also possible to derive
two sub-factor graphs from this model, each one associated with a step of the EM
algorithm with no loop, so each iteration of the EM algorithm does increase the
incomplete log-posterior. The pseudo code implementing our model for combining
multiple mixture models is given in Algorithm 1.

3. Numerical Experiments

3.1. Application to Synthetic Image Segmentation

3.1.1. Single Mixture

Implementation details. We first validated our algorithms on synthetic data gen-
erated from a mixture model with K = 3 components and Gaussian samples per

13

Algorithm 1 MAP inference on a probabilistic model combining mixture models.

Input: Data feature vectors (x
(h)
n)n,h, numbers of iterations niter, of components K

and of layers H, linear functions (u
(h)
n,k)n,h.

Output: Mixing probability maps p̂(h) and mixture parameters â(h).

1. Initialize mixture parameters of layer 1 with K-means algorithm.

2. Initialize mixing probabilities of other layers with the posterior probabilities
of layer 1.

3. Run M-step for all layer h > 1.

4. For t 6 niter,

• E-step:
For h 6 H, compute τ

(t,h)
n,k .

• M-step:
For h 6 H, compute mixing probability maps p

(t+1,h)
n,k using Equation (31)

and model parameters a(t+1,h).

component. We arranged observations on a 2D grid of size N = 256× 256 with fea-
ture dimension D = 3, similar to an RGB image with 256×256 pixels. To generate
synthetic data compatible with the model of Figure 1d, we started from determinis-
tic component–assignment maps (i.e. Pn is a one-hot vector), obtained by manually
partitioning the image in 3 spatially compact regions. Then, we sampled the com-
ponent assignments C and observations X from (23).

One important test of our model is how it handles uncertainty about component
assignment. Therefore, we performed two manipulations of the model parameters,
to control uncertainty (Figure 4). First, we controlled prior location uncertainty
by systematically smoothing the maps P using a Gaussian function with increasing
width (see Figure 4a and Figure 5a). Second, we increased the overlap between the
Gaussian distributions of the different classes, by increasing the observation variance
(Figure 4b). Figure 4c illustrates one sample image for each of the 9 uncertainty
combinations we explored, with location uncertainty increasing from left to right,
and component overlap increasing from top to bottom.

We applied our algorithm using 2-D Gaussian functions for un,k (See Proposition
1) to obtain a local spatial smoothing of the posterior. Hence, the update rule is

p
(t+1)
n,k = G ∗ τ (t)k (ln) (32)

where G is a Gaussian kernel with width σ = 5.25, τ
(t)
k : ln 7→ τ

(t)
n,k is the poste-

rior maps and ∗ denotes the discrete convolution. For comparison, we also used a
standard Gaussian Mixture Model with three components.

Results. We analyzed the component probability maps learned by our model (Fig-
ure 4d, labeled “Ours”; each map corresponds to one component, and lighter gray
scale values correspond to higher probability of that component), and compared
them to the ground truth maps (“GT”) as well as to a standard Gaussian Mix-
ture model (“GMM”). When uncertainty is minimal, our algorithm recovers the
GT maps accurately, and it improves slightly over the GMM, by removing isolated
outliers thanks to the spatial smoothing (Figure 4d, top–left block). Increasing
uncertainty either by location prior or component overlap, leads to more dramatic

14

failures of the GMM, whereas our model captures both the shape of the GT maps,
as well as the increased uncertainty (abundance of intermediate gray levels, corre-
sponding to probabilities close to 0.5, in the top row and left column of Figure 4d).
Importantly, when prior location uncertainty is low, our model is more robust to
component overlap uncertainty than the GMM (left column and bottom blocks),
whereas it displays similar failures as the GMM (except for the spatial smoothing)
when both component overlap and prior location uncertainties become too large
(Figure 4d, bottom–right block).

In summary, together our simulations demonstrate that our algorithm learns
probabilistic component-assignment maps, correctly capturing ground–truth labels
and their uncertainty, and performing spatial smoothing. We note that the spatial
smoothing achieved by our algorithm is qualitatively similar to that obtained by
other approaches [44, 57]. However, our formulation also allows for straightforward
and efficient integration of information consistent with different data topologies, well
beyond spatial smoothing, which we illustrate next.

3.1.2. Hierarchical Mixtures

Implementation details. To illustrate the flexibility of our approach, we applied it
to data generated from a 3–layer model as in Figure 3. This can be interpreted as a
simple hierarchical model of images, with features corresponding to different layers
of a DNN. For these simulations, we used three feature channels at each layer, and
displayed the data as RGB images (Figure 5a right). The model at each layer is as in
the previous section, with identical prior maps at all layers, except that the location
uncertainty is largest in the first layer and smallest in the third layer (illustrated by
the Ground Truth Maps in Figure 5a center). To perform the prior maps inference,
we applied the model of Figure 3 (i.e. where component–assignments at one layer
influence the prior of the other neighboring layers). In other words, we applied our

algorithm defining u
(h)
n,k as a combination of three Gaussian smoothing functions,

each one operating a local spatial average of the posterior maps of the current,
previous and next layers. This leads to the following update rule

p
(h,t+1)
n,k =

s
(h,t)
n

2
s
(h+1,t)
n

2
m

(h−1,t)
n,k + s

(h−1,t)
n

2
s
(h+1,t)
n

2
m

(h,t)
n,k + s

(h−1,t)
n

2
s
(h,t)
n

2
m

(h+1,t)
n,k

s
(h,t)
n

2
s
(h+1,t)
n

2
+ s

(h−1,t)
n

2
s
(h+1,t)
n

2
+ s

(h−1,t)
n

2
s
(h,t)
n

2 ,

(33)
where

m
(h,t)
n,k = G(h) ∗ τ (h,t)k (ln), s(h,t)n

2
=

∑K
k=1G

(h) ∗ τ (h,t)k

2
(ln)−m(h,t)

n,k

2

K(1−G(h) ∗G(h)(0))
, (34)

are respectively the local mean and variance of the posterior maps at layer h; τ
(h,t)
k :

ln 7→ τ
(h,t)
n,k is the posterior map at layer h; and G(h) is a 2-D Gaussian kernel with

width σ(h) = 5.25.

Results. Figure 5b illustrates that our algorithm learned maps consistent with the
ground truth at all layers, and also qualitatively reflected the decreasing uncertainty
across layers. Importantly, because the integration across layers of assignment in-
formation is weighted by the relative uncertainties, the maps in the first layer are
less uncertain than the corresponding ground truth (average difference between the
entropy of the Fit and Ground Truth maps = -0.14), and, correspondingly, the maps

15

in the second and third layer are more uncertain than the ground truth (entropy
difference = 0.13 for layer 2, and 0.23 for layer 3).

As a control, we also applied our single–mixture model independently to each
layer (Figure 5c). As expected, the algorithm recovered the maps correctly in the
less uncertain layer, but was not able to recover them in more the uncertain layers
(due to the high component uncertainty regime).

In summary, these results on synthetic data illustrate that our approach can in-
tegrate information about mixture components from multiple sources in a principled
way, and easily adapt to different topologies of the data (in our examples, spatial
arrangement and hierarchical organization).

3.2. Application to Natural Image Segmentation

To test our algorithms on natural images, we considered unsupervised segmen-
tation of natural images. This is a classical application of mixture model, and
particularly relevant for our framework, given that natural images have both spa-
tial and hierarchical structure, as demonstrated by the success of DNN models on
many visual tasks. We therefore applied our algorithms to natural images from
the BSD500 dataset [1], and compared the results between different variants of our
model and to the segmentation maps of human observers.

3.2.1. Single Mixture

Implementation details. As in the synthetic image experiments, we used RGB colors
as features. In addition to GMM, we ran our algorithm using Student-t Mixture
Models (SMM), that is using Student-t distributions to describe the data distri-
bution of each mixture component. The SMM is more robust to outliers, and the
comparison with the GMM allowed us to assess the importance of such robust-
ness for segmentation performance [9, 10, 62]. For both GMM and SMM, we also
compared the results with and without using our smoothing priors, to study their
relevance for segmentation. As the number K of components is unknown, we also
ran our algorithm with K = 3, 6 and 9, and studied the results separately. As for
synthetic data, the functions un,k are 2-D Gaussians, with width σ = 2.75. This
choice corresponds to spatial smoothing, and is motivated by the evidence from
previous algorithms that spatial smoothing improves image segmentation. In ad-
dition, it allows us to compare directly the performance of our algorithm to [44]
and [57]. To obtain segmentation maps directly comparable with those measured in
humans, we used a maximum a posteriori (MAP) approach: we assign each pixel to
the component with the highest probability, and therefore discard the probabilistic
information.

Quantitative Results. To quantify the performance of our algorithms, we used two
widely-adopted scores, that measure the similarity between the segmentation maps
of humans and of the algorithms: the adjusted Rand Index (aRI) [24] and the F-score
for boundaries (Fb) [47]. The aRI measures the overlap between regions in the two
segmentation maps, whereas Fb measures the consistency of boundaries between re-
gions. The results are reported in Figure 6. Overall performances of mixture models
are much lower than those of humans (which is assessed by quantifying consistency
across different observers), and generally the best performances are achieved using
the SMM and smoothing. Interestingly, for all tested K, our smoothing improves
both scores for SMM while it impairs both scores for GMM. The reason is that

16

c)
Prior Location Uncertainty

C
om

p
on

en
t

O
ve

rl
ap

U
n
ce

rt
ai

n
ty

a)
Prior Location

Uncertainty

1

Location (n)

P
ro

b
ab

il
it

y
(P

n
)

b)
Component Over-
lap Uncertainty

Feature (X)

P
ro

b
ab

il
it

y
(P

X
(k

)
)

low
high

d)
Prior Location Uncertainty

C
om

p
on

en
t

O
ve

rl
ap

U
n
ce

rt
ai

n
ty

G
T

O
u
rs

G
M

M
G

T
O

u
rs

G
M

M

Figure 4: See caption on the next page.

17

Figure 4: Validation on synthetic color images with uncertainty manipulation. a) We control
location uncertainty by setting the probability of each component to values close to 1 (red, low
uncertainty) or to 0.5 (blue, high uncertainty), at any given location in the image (illustrated for
a 1-dimensional image in the cartoon). b) We control component uncertainty by decreasing (red,
low uncertainty) or increasing (blue, high uncertainty) the overlap of the Gaussian distributions
of the two features within each component (illustrated for a 1-dimensional feature). c) Example
synthetic images with three feature channels (corresponding to RGB values) and three components,
generated from the model with increasing location uncertainty from left to right, and and increasing
component overlap from top to bottom. d) Each block of 3 by 3 maps contains the ground truth
component probability maps (top row, labeled GT), and the maps recovered by our algorithm
(middle row, labeled Ours) and by a Gaussian Mixture Model (bottom row, labeled GMM). Each
map corresponds to a different component, and lighter pixels correspond to higher probability that
the pixel is assigned to that component. Different 3 by 3 blocks correspond to different levels of
location uncertainty and component overlap uncertainty, as described in a) and b). Figure is best
seen in color.

the smoothing dramatically affects the parameters learned in Gaussian components
while the robustness of the Student’s components prevents this effect. Further-
more, increasing the number of components decreases the average scores in general,
although the best K varies substantially across images. The average decrease in per-
formance at larger K might be due to an increase in the detection of false contours.

0.0

0.2

0.4

0.6

0.8

1.0

F
-s

co
re

b
ou

n
d

ar
ie

s
(F

b)

K = 3
GMM SMM

K = 6
GMM SMM
human

Standard Smooth (ours)

K = 9
GMM SMM

0.2

0.4

0.6

0.8

1.0

A
d

ju
st

ed
R

an
d

In
d

ex
(a

R
I)

human

Figure 6: Performance of single mixture models
trained with RGB color features on the BSD 500 for
the two scores defined in text. Error bars indicate 3
times the standard error of the mean. Shaded areas
represent scores density. Figure is best seen in color.

Comparison with Other Unsuper-
vised Learning Algorithms. We com-
pare our algorithm to the follow-
ing classical unsupervised learning
algorithms: KMeans [56], Birch [66]
and MeanShift [11]. In addition,
we also compare to DCM-SVFMM
of Nikou et al. [44] and LDDP of
Sun et al. [57], the two smoothing
models that we presented in Section
1. All those algorithms rely on a
parameter which controls the num-
ber of clusters, either directly or us-
ing the bandwidth for MeanShift (la-
beled B1, B2 and B3 in the Figure).
The quantitative results are shown in
Figure 7. For both scores and when
K = 3 or 6, the three smoothing-
based models ([44], [57] and ours)
perform better than the three other
models. For K = 9, only our model
performs marginally better than oth-
ers. Among the three smoothing
models, ours performs best, followed
by [57] and then [44]. However, the difference is sometimes marginal (overlapping
error bars for K = 3 in both scores).

Qualitative Results. In Figure 8, we show four segmentation examples among which
two have high aRI scores (top) and two have low aRI scores (bottom). The main

18

a)

b) c)

L
ay

er
1

L
ay

er
2

L
ay

er
3

Colored
seg. map

One-hot
vectors

Sm
oo

th
in

g

Ground Truth Maps

Sampling

Features

Fitted Maps Fitted Maps Indep.

Figure 5: Validation of hierarchical mixtures. a) Pipeline to generate the synthetic hierarchical
data. Example synthetic images have three feature channels (displayed as RGB images on the
right) and three components (columns of Ground Truth Maps), at three different layers (rows of
Ground Truth Maps). b) Maps recovered by our hierarchical multi-layer model (Figure 3). Same
conventions as in a). c) Maps recovered by applying our single mixture model independently at
each layer. Same conventions as in a). Figure is best seen in color.

19

qualitative difference is that images with high score have sharp contours delimiting
weakly textured areas, and different areas have largely different color, whereas low
score images have blurry contours delimiting rough textured areas. Similar to what
we have shown in the synthetic data, our smoothing enforces contiguity of component
areas. The examples of Figure 8 also illustrate some aspects of our quantitative
results. First, increasing K does not improve scores on average. For instance, for the
top right image, when we train mixture models with K = 9 components, we observe
false contours (in the sky and mountain) and therefore the emergence of superfluous
areas, which impairs both scores. Second, the four selected examples illustrate how
smoothing improves the scores for SMM while it diminishes the scores for GMM.

0.0

0.2

0.4

0.6

0.8

1.0

F
-s

co
re

b
ou

n
d

ar
ie

s
(F

b)

K = 3 B1 K = 6 B2

human

sSMM (ours)

Nikou-SMM

Sun-SMM
KMeans

Birch
MeanShift

K = 9 B3

0.0

0.2

0.4

0.6

0.8

1.0

A
d

ju
st

ed
R

an
d

In
d

ex
(a

R
I)

K = 3 B1 K = 6 B2

human

K = 9 B3

Figure 7: Comparison of our best model with other
unsupervised learning models. All algorithms are
trained with RGB color features on the BSD 500,
and evaluated on the two scores defined in text. Er-
ror bars indicate 3 times the standard error of the
mean. Shaded areas represent scores density. Figure
is best seen in color.

For instance, for the bottom-left
image, we observe that the leop-
ard is well-delimited by the GMM,
whereas the smoothing mixes the
leopard with the background. This is
not the case for SMM with smooth-
ing, thanks to the robustness of the
Student-t distribution.

3.2.2. Multiple Mixtures

Implementation details. For the hi-
erarchical observations (x

(h)
n)n,h, we

used image features extracted by
the pre-trained deep network VGG
19 [55]. We compared Gaussian
(GMM) and Student-t (SMM) mix-
ture components. The Student-
t distribution captures the sparse,
heavy-tailed behavior of both low-
level features (e.g. wavelet coeffi-
cients [62, 59]) and higher-level fea-
tures extracted by DNN [50]. There-
fore, comparing GMM to SMM al-
lows us to study the importance of
modeling accurately the component
distributions, for segmentation per-
formance. To assess the relative im-
portance of integrating information
across spatial and hierarchical dimensions, we implemented two models. Model a
used a nearest-neighbor hierarchical structure, similar to Figure 3. Therefore, in this
model, each layer integrated information spatially as well as from one layer below
and one above. Because model a resulted in a separate (though not independent)
segmentation map per feature layer, we compared two approaches to extract a sin-
gle segmentation map for performance evaluation and for model comparison: (i) we
computed the product of all the probability maps at all layers, and then computed
the MAP segmentation map, strategy that we call Model a; (ii) we computed the
MAP segmentation map from the probabilities of the first layer only, strategy that
we call Model a / 1st layer. Lastly, we also considered a second model (model b), in

20

Original Image

K = 3 K = 6 K = 9

sS
M

M
S
M

M
sG

M
M

G
M

M
Original Image

K = 9K = 6K = 3

Original Image

K = 3 K = 6 K = 9

sS
M

M
S
M

M
sG

M
M

G
M

M

Original Image

K = 3 K = 6 K = 9

aRI= 0.44 Fb = 0.80 aRI= 0.65 Fb = 0.88 aRI= 0.61 Fb = 0.82

aRI= 0.25 Fb = 0.80 aRI= 0.59 Fb = 0.80 aRI= 0.58 Fb = 0.78

aRI= 0.22 Fb = 0.42 aRI= 0.51 Fb = 0.77 aRI= 0.43 Fb = 0.78

aRI= 0.23 Fb = 0.80 aRI= 0.60 Fb = 0.84 aRI= 0.64 Fb = 0.81

aRI= 0.50 Fb = 0.70 aRI= 0.71 Fb = 0.72 aRI= 0.55 Fb = 0.68

aRI= 0.49 Fb = 0.63 aRI= 0.68 Fb = 0.70 aRI= 0.50 Fb = 0.67

aRI= 0.43 Fb = 0.58 aRI= 0.31 Fb = 0.50 aRI= 0.40 Fb = 0.54

aRI= 0.39 Fb = 0.66 aRI= 0.64 Fb = 0.64 aRI= 0.47 Fb = 0.63

aRI= 0.18 Fb = 0.36 aRI= 0.08 Fb = 0.28 aRI= 0.07 Fb = 0.29

aRI= 0.11 Fb = 0.26 aRI= 0.01 Fb = 0.27 aRI= 0.05 Fb = 0.28

aRI= 0.00 Fb = 0.10 aRI= 0.00 Fb = 0.09 aRI= 0.00 Fb = 0.14

aRI= 0.22 Fb = 0.30 aRI= 0.12 Fb = 0.29 aRI= 0.09 Fb = 0.27

aRI= 0.16 Fb = 0.51 aRI= 0.04 Fb = 0.28 aRI= 0.03 Fb = 0.24

aRI= 0.11 Fb = 0.40 aRI= 0.03 Fb = 0.26 aRI= 0.02 Fb = 0.24

aRI= 0.00 Fb = 0.06 aRI= 0.00 Fb = 0.06 aRI= 0.00 Fb = 0.08

aRI= 0.19 Fb = 0.34 aRI= 0.11 Fb = 0.31 aRI= 0.05 Fb = 0.23

Figure 8: Segmentation of natural images using mixture models with (sGMM/sSMM) and without
(GMM/SMM) smoothing. Top: high-aRI images. Bottom: low-aRI images. We display the area
corresponding to each component with the average color of the original image inside that area. For
each image, the aRI and Fb scores are shown in white. Figure is best seen in color.

21

which the observations at all layers shared a single segmentation map, i.e. a single
set of class labels (Cn)n. Therefore, in model b, the prior parameters and corre-
sponding mixing probabilities were influenced by the observations at all layers, with
uncertainty-weighting. Again, by choosing the function u

(h)
n,k appropriately, model

a has the update rule given by Equation (33) whereas model b has the following
update rule

p
(1,t+1)
n,k =

∑H
h=1

∏
i 6=h s

(i,t)
n

2
m

(h,t)
n,k∑H

h=1

∏
i 6=h s

(i,t)
n

2 , (35)

where m
(h,t)
n,k and s

(h,t)
n

2
are respectively the local mean and variance of the posterior

maps at layer h, defined in Equation (3.1.2) and (34) respectively; τ
(h,t)
k : ln 7→ τ

(h,t)
n,k

is the posterior map at layer h; and G(h) is a 2-D Gaussian kernel with width
σ(h). The two models a and b are fitted using Algorithm 1, with respectively
the modified update rule (33) and (35). We used the following values of σ(h):
4.25, 4.25, 3.25, 3.25, 2.25, 2.25, 2.25, 2.25, 0.75, . . . , 0.75 for both models.

0.0

0.2

0.4

0.6

0.8

1.0

F
-s

co
re

b
ou

n
d

ar
ie

s
(F

b)

K = 3
GMM SMM

K = 6
GMM SMM
human

Model a Model a / 1st layer Model b

K = 9
GMM SMM

0.2

0.4

0.6

0.8

1.0

A
d

ju
st

ed
R

an
d

In
d

ex
(a

R
I)

human

Figure 9: Performance of model a and b trained with
VGG 19 features on the BSD 500 for the two scores
defined in text. Error bars and shaded areas: same
convention as in Figure 8. For each image, the aRI
and Fb scores are shown in white. Figure is best seen
in color.

Importantly, the modified update
rules implement uncertainty-based
integration: the local mean of each
layer is weighted by the local vari-
ances of the other layers, such that a
layer with higher uncertainty (large
variance) will contribute relatively
less to the update of the other lay-
ers. We adapted our implementa-
tion of the models to the structure
of VGG features. First, the number
of pixels (i.e. the number of sam-
ples) is not same in the different lay-
ers, therefore we up-sampled the pos-
terior probability maps τ

(h,t)
k using

nearest neighbor interpolation before
convolution with G(h) when it was
necessary. Second, the decreasing
number of samples and the increas-
ing dimension of features along the
depth of the network often caused
numerical issues, therefore we re-
duced the dimension at each layer
using Principal Component Analy-
sis (PCA), including only the dimen-
sions needed to capture 95% of the
variance. Third, the first layer of the deep network is a linear transform of the input
image, in contrast with all subsequent layers, therefore we added the features of the
first layer to all subsequent layers (using average pooling when necessary).

Quantitative Results. The F-score and aRI of model a, model a/1st layer only, and
model b are reported in Figure 9. The use of VGG features impairs contour de-
tection in comparison to the use of RGB features, for the GMMs and the SMM

22

without smoothing. Indeed the F-score is much lower for all model variants except
for model a/1st layer and model b both with SMM (Figure 9, top vs Figure 6,
top). Increasing the number of component K tends to recover the performance on
the F-scores, for the models that are impaired by VGG features. The impairment
of contour detection is due to the reduced resolution of the maps at deeper layer,
which influences the combined segmentation map, but much less the map obtained
with the 1st layer only. In contrast, the use of VGG features improves the aRI of
SMM while impairing the aRI of GMM, in comparison with RGB features (Figure 9,
bottom vs Figure 6, bottom). Yet, the use of combined maps does not improve the
aRI score of the 1st layer segmentation maps. Increasing the number of components
K has almost no effect on average performances, although, as for RGB, the best
K varies substantially across images. Overall performances of model b are higher
than those of model a but are lower than those of the model a/1st layer. Lastly,
as for RGB, the performance of both models is much lower than humans. We show
in Figure 10 that both scores are negatively correlated with the level of uncertainty
captured by the Student-t mixture model. Such correlation is interesting because it
shows that resolving high uncertainty areas using additional low uncertainty features
can improve segmentation quality. In addition, this could explain the marginal su-
periority of model b over the combination of probabilities of model a. Indeed model
b weights low uncertainty layer maps more which should lead to higher scores. This
observation does not hold for Gaussian mixture (see supplementary Figure A.13).

Qualitative Results. We show in Figure 11 four segmentation examples, two with
high aRI scores (top) and two with low aRI scores (bottom) for model a (1st layer
and combined) and model b. These examples are selected to illustrate our main
quantitative result: the overall superiority of SMM over GMM for all three models.
Similar to the segmentation based on RGB features, images with high scores tend
to have sharper contours between segments and more uniform textures within each
segment. A second observation is that incorporating information from deeper layers
(compare models a and b to model a 1st layer) lower the spatial resolution of the
segmentation maps. For SMM, the segmentation maps provided by models a and
b are hard to distinguish, indicating that both combination methods (uncertainty
weighting vs product) lead to similar results for these four particular images. Nev-
ertheless the negative correlation between scores and entropy (Figure 10) suggests

0.0 0.5 1.0

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

F
-s

co
re

b
ou

n
d

ar
ie

s
(F

b)

R = −0.35
sSMM-a (1st layer) – K = 6

0.0 0.5 1.0

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

A
d

ju
st

ed
R

an
d

In
d

ex
(a

R
I) R = −0.68

sSMM-a (1st layer) – K = 6

Figure 10: Negative correlation between both scores and entropy of model a/1st layer when using
Student-t mixtures.

23

Original Image

K = 3 K = 6 K = 9
sS

M
M
-a
1

sS
M
M
-a

sS
M
M
-b

sG
M
M
-a
1

sG
M
M
-a

sG
M
M
-b

Original Image

K = 9K = 6K = 3

Original Image

K = 3 K = 6 K = 9

sS
M
M
-a
1

sS
M
M
-a

sS
M
M
-b

sG
M
M
-a
1

sG
M
M
-a

sG
M
M
-b

Original Image

K = 9K = 6K = 3

aRI= 0.80 Fb = 0.77 aRI= 0.78 Fb = 0.77 aRI= 0.74 Fb = 0.69

aRI= 0.73 Fb = 0.63 aRI= 0.72 Fb = 0.61 aRI= 0.63 Fb = 0.58

aRI= 0.75 Fb = 0.68 aRI= 0.73 Fb = 0.64 aRI= 0.63 Fb = 0.64

aRI= 0.46 Fb = 0.50 aRI= 0.37 Fb = 0.49 aRI= 0.15 Fb = 0.45

aRI= 0.00 Fb = 0.42 aRI= 0.19 Fb = 0.48 aRI= 0.22 Fb = 0.38

aRI= 0.53 Fb = 0.45 aRI= 0.54 Fb = 0.56 aRI= 0.46 Fb = 0.52

aRI= 0.80 Fb = 0.58 aRI= 0.84 Fb = 0.69 aRI= 0.66 Fb = 0.62

aRI= 0.76 Fb = 0.46 aRI= 0.73 Fb = 0.62 aRI= 0.60 Fb = 0.52

aRI= 0.71 Fb = 0.45 aRI= 0.82 Fb = 0.66 aRI= 0.63 Fb = 0.56

aRI= 0.43 Fb = 0.33 aRI= 0.14 Fb = 0.35 aRI= 0.15 Fb = 0.39

aRI= 0.40 Fb = 0.08 aRI= 0.21 Fb = 0.50 aRI= 0.03 Fb = 0.43

aRI= 0.37 Fb = 0.00 aRI= 0.64 Fb = 0.60 aRI= 0.53 Fb = 0.52

aRI= 0.12 Fb = 0.57 aRI= 0.15 Fb = 0.59 aRI= 0.17 Fb = 0.62

aRI= 0.11 Fb = 0.42 aRI= 0.11 Fb = 0.47 aRI= 0.13 Fb = 0.49

aRI= 0.12 Fb = 0.45 aRI= 0.11 Fb = 0.50 aRI= 0.16 Fb = 0.57

aRI= 0.06 Fb = 0.36 aRI= 0.14 Fb = 0.54 aRI= 0.12 Fb = 0.54

aRI= 0.07 Fb = 0.40 aRI= 0.08 Fb = 0.36 aRI= 0.14 Fb = 0.43

aRI= 0.08 Fb = 0.34 aRI= 0.12 Fb = 0.47 aRI= 0.13 Fb = 0.53

aRI= 0.07 Fb = 0.81 aRI= 0.10 Fb = 0.78 aRI= 0.18 Fb = 0.80

aRI= 0.07 Fb = 0.56 aRI= 0.09 Fb = 0.66 aRI= 0.18 Fb = 0.77

aRI= 0.07 Fb = 0.68 aRI= 0.09 Fb = 0.72 aRI= 0.18 Fb = 0.82

aRI= 0.01 Fb = 0.41 aRI= 0.01 Fb = 0.61 aRI= 0.03 Fb = 0.67

aRI= 0.06 Fb = 0.49 aRI= 0.04 Fb = 0.59 aRI= 0.10 Fb = 0.61

aRI= 0.00 Fb = 0.21 aRI= 0.05 Fb = 0.63 aRI= 0.08 Fb = 0.71

Figure 11: Segmentation of natural images using models a (1st layer and combined) and b on VGG
19 features with smoothing for Gaussian (sGMM) and Student-t mixture (sSMM). Top: high-aRI
images. Bottom: low-aRI images. Figure is best seen in color.

24

sSMM-independent layers sSMM-a

Figure 12: Segmentation at all layers for K = 6. Left: sSMM trained independently on each VGG
layer. Right: sSMM-a. Figure is best seen in color.

that model b (i.e. uncertainty weighting) is best across multiple images, as we
observed in the quantitative results Figure 9. Finally, we illustrate in Figure 12
how our local combination of layers (model a) enforces consistency of segmentation
maps across layers in comparison to when mixture models are trained on each layer
independently.

3.3. Discussion

We have presented a new approach to unsupervised clustering via probabilistic
mixture models, that exploits the topology of the dataset to improve clustering
performance. We have shown that, similar to other related algorithms, our method
can be understood by considering the probability that each datapoint belongs to
a latent class (the mixing probability) as a free parameter, and by introducing
topological information as a strong regularization. Our main innovation consists in
how we formulate the joint prior over mixing probabilities of all datapoints (i.e. the
regularizer): With our formulation, when optimizing the parameters via the EM
algorithm, the update rule of the mixing probability of one datapoint is linear in the
mixing probabilities of the other datapoints (Table 1). Furthermore, our method
allows us to choose any desired linear combination of the mixing probabilities, and
therefore can be adapted to arbitrary data topology.

We have demonstrated how the approach can be used to obtain spatial smoothing
of clusters when the data have two spatial dimensions (e.g. images; Figure 1d), and
uncertainty-weighted integration across multiple feature channels organized hierar-
chically (e.g. across the layers of a DNN; Figure 3). We demonstrated on synthetic
data that our method performs spatial smoothing and captures ground-truth clus-
tering uncertainty accurately (Figures 4 and 5). In comparison to related methods
[44, 57], ours has the advantages of computational simplicity and flexibility, because
it allows the user to choose any desired linear update rule, to combine information
according to the data topology.

Our application to unsupervised segmentation of natural images, based on the
pixels RGB values, demonstrates that smoothing is effective at removing spurious
spatial discontinuities in segmentation maps, but also that, when doing so, it is

25

important to adopt an observation model that is robust to outliers (e.g. mixtures
of Student-t rather than Gaussian distributions; Figures 6 and 8). Our application
to natural image segmentation based on VGG-19 demonstrates the flexibility of our
approach to combine segmentation information across hierarchical layers. Because
of the lower spatial resolution of deep layers, combining segmentation information
across layers increases the resolution of the segmentation maps in deeper layers,
while reducing it in superficial layers. In addition, our method produces segmenta-
tion maps that are consistent across all layers (Figure 11) and exploits higher-level
information about objects (encoded implicitly by the deep layers of VGG-19) to
correctly group areas that could otherwise be segmented based on low-level feature
appearance, and to further improve noise reduction compared to spatial smoothing
alone.

Our analysis of quantitative performance on the BSD500 (Figures 6 and 9) con-
firms the importance of using mixture components robust to outliers: the Student-t
mixtures generally outperformed the Gaussian mixtures, particularly when using
VGG19 features. The comparisons also highlight that information can be combined
across the VGG19 hierarchy in different ways, leading to different outcomes. For
the Fb score (related to contour detection), a nearest-neighbor strategy performs
better than a single prior map shared between all layers, because the former pre-
serves higher spatial resolution; whereas for aRI (related to region overlap) there
is not much difference. Overall, our models perform better than other compara-
ble algorithms, including several standard approaches to unsupervised clustering
(KMeans [56], Birch [66], MeanShift [11]) and the smoothing algorithms most closely
related to our framework (DCM-SVFMM [44] and LDDP [57]). On the other hand,
our models do not reach human-level performance, nor state-of-the-art performance
set by more modern deep learning based algorithms for unsupervised image segmen-
tation [37]. Our algorithms performance could be improved by fine tuning certain
implementation details, such as the dimensionality reduction of the feature space
(e.g. [4]), and adopting methods to choose the best number of components K per
image. However, maximizing performance on BSD and performing an exhaustive
comparison with unsupervised segmentation methods is beyond the scope of this
paper.

As a model of biological vision, an important avenue for improvement is suggested
by the fact that image segmentation in human perception is influenced strongly by
semantic information about the objects that are recognized in the image [42]. There-
fore, future extensions of our model for segmentation should include explicit object
information, either directly, e.g. using object classes predicted by VGG to bias the
prior on mixing probabilities, or indirectly using human segmentation to refine the
observation model of each cluster via semi-supervised learning. Besides performance
on the standard benchmarks, the framework we have proposed has two main advan-
tages over state-of-the-art algorithms [37]. First, it provides a probabilistic model,
and therefore accounts for the uncertainty of segmentation, which will be crucial
for real-life applications e.g. with noisy sensors and complex scenes, as well as for
models of biological visual segmentation. Although this cannot yet be quantified
precisely with existing data sets, because segmentation uncertainty has not been
measured, our analysis (Figure 10) indicates that the uncertainty captured by our
algorithms can be exploited to identify candidate image regions where segmenta-
tion can be most improved. Second, different from existing deep learning based

26

algorithms tailored for image segmentation, our model generalizes easily to other
unsupervised learning problems and data topologies.

The computational advantages of our approach come at the cost of introducing
loops in the probabilistic graphical model, specifically between the class information
and the prior on the class (Figure 1d). In this paper, we have shown that this issue
is mitigated by considering factor graphs theory and by observing that the loops are
absent from the two subgraphs corresponding to the two steps of the EM algorithm.
Recurrent network models, that have been proposed recently to account for the fact
that human image segmentation likely involves heavy recurrence and hierarchical
feedback [33], also rely on loopy architectures and are typically trained unrolling
the model in time. Those models have been tested on specific tasks and bench-
marks designed to highlight the importance of recurrence, but not on natural image
segmentation databases. Although our approach is based on probabilistic graphi-
cal models and therefore is not directly comparable to recurrence and feedback in
deterministic networks, our method to combine class information across datapoints
effectively achieves similar goals. Additionally, our approach being fully probabilis-
tic, it guarantees that the recurrent and feedback information are correctly weighted
by their uncertainty, and the resulting segmentation maps are probabilistic. In fu-
ture work, this could be exploited to study quantitatively recurrent processing in
human perception and in neural processing in the visual cortex [60, 32].

Acknowledgements

We thank Pascal Mamassian for fruitful discussion. RCC is supported by NIH
(NIH/CRCNS EY031166). JV is supported by ANR (ANR-19-NEUC-0003-01).

References

[1] Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection
and hierarchical image segmentation. IEEE transactions on pattern analysis and
machine intelligence, 33(5), 898–916.

[2] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE transactions
on pattern analysis and machine intelligence, 39(12), 2481–2495.

[3] Blei, D. M. & Frazier, P. I. (2011). Distance dependent chinese restaurant pro-
cesses. Journal of Machine Learning Research, 12(8).

[4] Bouveyron, C. & Brunet-Saumard, C. (2014). Model-based clustering of high-
dimensional data: A review. Computational Statistics & Data Analysis, 71, 52–78.

[5] Boyd, S. & Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-
sity Press.

[6] Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on pattern analysis and machine
intelligence, 23(11), 1222–1239.

[7] Boyles, R. A. (1983). On the convergence of the em algorithm. Journal of the
Royal Statistical Society: Series B (Methodological), 45(1), 47–50.

27

[8] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018).
Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on pattern analysis and
machine intelligence, 40(4), 834–848.

[9] Coen-cagli, R., Dayan, P., & Schwartz, O. (2009). Statistical models of linear
and nonlinear contextual interactions in early visual processing. In Y. Bengio, D.
Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in Neural
Information Processing Systems, volume 22: Curran Associates, Inc.

[10] Coen-cagli, R., Dayan, P., & Schwartz, O. (2012). Cortical surround interac-
tions and perceptual salience via natural scene statistics. PLOS Computational
Biology, 8(3), 1–18.

[11] Comaniciu, D. & Meer, P. (2002). Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on pattern analysis and machine intelligence,
24(5), 603–619.

[12] Dauwels, J., Eckford, A., Korl, S., & Loeliger, H.-A. (2009). Expectation max-
imization as message passing-part i: Principles and gaussian messages. arXiv
preprint arXiv:0910.2832.

[13] Dauwels, J., Korl, S., & Loeliger, H. . (2005). Expectation maximization as
message passing. In Proceedings. International Symposium on Information The-
ory, 2005. ISIT 2005. (pp. 583–586).

[14] Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1), 1–22.

[15] Dhanachandra, N., Manglem, K., & Chanu, Y. J. (2015). Image segmentation
using k-means clustering algorithm and subtractive clustering algorithm. Procedia
Computer Science, 54, 764–771.

[16] Eckford, A. & Pasupathy, S. (2000). Iterative multiuser detection with graphical
modeling. In 2000 IEEE International Conference on Personal Wireless Commu-
nications. Conference Proceedings (Cat. No. 00TH8488) (pp. 454–458).: IEEE.

[17] Eckford, A. W. (2004). Channel estimation in block fading channels using the
factor graph em algorithm. In 22nd Biennial Symposium on Communications (pp.
1–3).

[18] Elder, J. H. & Goldberg, R. M. (2002). Ecological statistics of gestalt laws for
the perceptual organization of contours. Journal of Vision, 2(4), 5–5.

[19] Fowlkes, C. C., Martin, D. R., & Malik, J. (2007). Local figure–ground cues
are valid for natural images. Journal of Vision, 7(8), 2–2.

[20] Frey, B. J. (2003). Extending factor graphs so as to unify directed and undi-
rected graphical models. In Proceedings of the Nineteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’03 (pp. 257–264). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

28

[21] Gan, H., Sang, N., & Huang, R. (2015). Manifold regularized semi-supervised
gaussian mixture model. JOSA A, 32(4), 566–575.

[22] Ghosh, S., Ungureanu, A. B., Sudderth, E. B., & Blei, D. M. (2011). Spa-
tial distance dependent chinese restaurant processes for image segmentation. In
Advances in Neural Information Processing Systems (pp. 1476–1484).

[23] He, X., Cai, D., Shao, Y., Bao, H., & Han, J. (2010). Laplacian regularized
gaussian mixture model for data clustering. IEEE Transactions on Knowledge
and Data Engineering, 23(9), 1406–1418.

[24] Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of classification,
2(1), 193–218.

[25] Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: a
probabilistic approach to early computational vision. Springer.

[26] Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., & Song, M. (2019). Neural style
transfer: A review. IEEE transactions on visualization and computer graphics,
26(11), 3365–3385.

[27] Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models.
International journal of computer vision, 1(4), 321–331.

[28] Kim, J., Linsley, D., Thakkar, K., & Serre, T. (2019). Disentangling neural
mechanisms for perceptual grouping. arXiv preprint arXiv:1906.01558.

[29] Koller, D. & Friedman, N. (2009). Probabilistic graphical models: principles
and techniques. MIT press.

[30] Kreiman, G. & Serre, T. (2020). Beyond the feedforward sweep: feedback
computations in the visual cortex. Annals of the New York Academy of Sciences,
1464(1), 222–241.

[31] Kschischang, F., Frey, B., & Loeliger, H.-A. (2001). Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.

[32] Lee, T. S. & Mumford, D. (2003). Hierarchical bayesian inference in the visual
cortex. JOSA A, 20(7), 1434–1448.

[33] Linsley, D., Kim, J., Ashok, A., & Serre, T. (2019). Recurrent neural circuits
for contour detection. In International Conference on Learning Representations.

[34] Linsley, D., Kim, J., Veerabadran, V., Windolf, C., & Serre, T. (2018). Learning
long-range spatial dependencies with horizontal gated recurrent units. In Advances
in Neural Information Processing Systems (pp. 152–164).

[35] Liu, J., Cai, D., & He, X. (2010). Gaussian mixture model with local consis-
tency. In Twenty-Fourth AAAI Conference on Artificial Intelligence.

[36] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431–3440).

29

[37] Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., & Van Gool, L. (2018). Convolu-
tional oriented boundaries: From image segmentation to high-level tasks. IEEE
transactions on pattern analysis and machine intelligence, 40(4), 819–833.

[38] Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect natural
image boundaries using local brightness, color, and texture cues. IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, (5), 530–549.

[39] McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite mixture
models. Annual review of statistics and its application, 6, 355–378.

[40] Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., & Ter-
zopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[41] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT
Press.

[42] Neri, P. (2017). Object segmentation controls image reconstruction from natural
scenes. PLoS biology, 15(8), e1002611.

[43] Nikou, C., Galatsanos, N. P., & Likas, A. C. (2007). A class-adaptive spatially
variant mixture model for image segmentation. IEEE Transactions on Image
Processing, 16(4), 1121–1130.

[44] Nikou, C., Likas, A. C., & Galatsanos, N. P. (2010). A bayesian framework
for image segmentation with spatially varying mixtures. IEEE Transactions on
Image Processing, 19(9), 2278–2289.

[45] Olshausen, B. A. & Field, D. J. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583), 607.

[46] Peterson, M. A. & Gibson, B. S. (1994). Object recognition contributions
to figure-ground organization: Operations on outlines and subjective contours.
Perception & Psychophysics, 56(5), 551–564.

[47] Pont-Tuset, J. & Marques, F. (2013). Measures and meta-measures for the su-
pervised evaluation of image segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (pp. 2131–2138).

[48] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention (pp. 234–241).: Springer.

[49] Saarela, T. P. & Landy, M. S. (2012). Combination of texture and color cues
in visual segmentation. Vision research, 58, 59–67.

[50] Sanchez-Giraldo, L. G., Laskar, M. N. U., & Schwartz, O. (2019). Normaliza-
tion and pooling in hierarchical models of natural images. Current opinion in
neurobiology, 55, 65–72.

[51] Sfikas, G., Nikou, C., & Galatsanos, N. (2007). Robust image segmentation with
mixtures of student’s t-distributions. In 2007 IEEE International Conference on
Image Processing, volume 1 (pp. I–273).: IEEE.

30

[52] Sfikas, G., Nikou, C., & Galatsanos, N. (2008). Edge preserving spatially vary-
ing mixtures for image segmentation. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition (pp. 1–7).: IEEE.

[53] Shi, T. & Horvath, S. (2006). Unsupervised learning with random forest pre-
dictors. Journal of Computational and Graphical Statistics, 15(1), 118–138.

[54] Sigman, M., Cecchi, G. A., Gilbert, C. D., & Magnasco, M. O. (2001). On
a common circle: natural scenes and gestalt rules. Proceedings of the National
Academy of Sciences, 98(4), 1935–1940.

[55] Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[56] Steinhaus, H. (1956). Sur la division des corps matériels en parties. Bulletin
de l’Académie Polonaise des Sciences, Cl. III — Vol. IV(12), 801–804.

[57] Sun, S., Paisley, J., & Liu, Q. (2017). Location dependent dirichlet processes.
In International Conference on Intelligent Science and Big Data Engineering (pp.
64–76).: Springer.

[58] Thiagarajan, J. J., Ramamurthy, K. N., & Spanias, A. (2014). Multiple kernel
sparse representations for supervised and unsupervised learning. IEEE transac-
tions on Image Processing, 23(7), 2905–2915.

[59] Vacher, J., Davila, A., Kohn, A., & Coen-Cagli, R. (2020). Texture interpo-
lation for probing visual perception. Advances in Neural Information Processing
Systems, 33.

[60] Vacher, J., Mamassian, P., & Coen-Cagli, R. (2018). Probabilistic model of
visual segmentation.

[61] Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh,
M., & von der Heydt, R. (2012). A century of gestalt psychology in visual per-
ception: I. perceptual grouping and figure–ground organization. Psychological
bulletin, 138(6), 1172.

[62] Wainwright, M. J. & Simoncelli, E. P. (2000). Scale mixtures of gaussians and
the statistics of natural images. In Advances in neural information processing
systems (pp. 855–861).

[63] Wu, C. F. J. (1983). On the Convergence Properties of the EM Algorithm. The
Annals of Statistics, 11(1), 95 – 103.

[64] Yang, Y., Zhang, F., Zheng, C., & Lin, P. (2005). Unsupervised image segmen-
tation using penalized fuzzy clustering algorithm. In International Conference on
Intelligent Data Engineering and Automated Learning (pp. 71–77).: Springer.

[65] Ye, X., Zhao, J., & Chen, Y. (2018). A nonparametric model for multi-manifold
clustering with mixture of gaussians and graph consistency. Entropy, 20(11), 830.

[66] Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: an efficient data
clustering method for very large databases. ACM sigmod record, 25(2), 103–114.

31

[67] Zhao, S., Dong, Y., Chang, E. I., Xu, Y., et al. (2019). Recursive cascaded
networks for unsupervised medical image registration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (pp. 10600–10610).

Appendix A. Supplementary Figures

0.0 0.5 1.0

Entropy

0.0

0.2

0.4

0.6

0.8

1.0
F

-s
co

re
b

ou
n

d
ar

ie
s

(F
b)

R = 0.23
sGMM-a (1st layer) – K = 6

0.0 0.5 1.0

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

A
d

ju
st

ed
R

an
d

In
d

ex
(a

R
I) R = −0.01

sGMM-a (1st layer) – K = 6

Figure A.13: Positive or null correlation between both scores and entropy model a/1st layer when
using Gaussian mixtures.

Appendix B. Proof of propositions 1 and 3

Proof of Proposition 1. Using the Dirichlet prior (12) of the main paper, the com-
pleted log-posterior writes

` (θ; (xn, Cn,Bn)n) =
N∑

n=1

K∑
k=1

(Bn,k − 1 + 1k(Cn)) ln (pn,k) +W ((xn, Cn,Bn)n;α),

where W is the function that gathers all the terms of ` that do not depend on pn,k.

Knowing the previous parameter estimate θ(t), the E-step consists in taking the
conditional expectation of the log-posterior ` which is

Q(θ;θ(t), (xn)n) =
N∑

n=1

K∑
k=1

E
(
Bn,k − 1 + 1k(Cn)|(xn)n,θ

(t)
)

ln (pn,k)+w((xn)n;α,θ(t)),

where w((xn)n;α,θ(t)) = E
(
W ((xn, Cn,Bn)n;α)|(xn)n,θ

(t)
)

and

E
(
Bn,k − 1 + 1k(Cn)|(xn)n,θ

(t)
)

= E
(
un,k(1k(C·))|(xn)n,θ

(t)
)

= un,k

(
E
(
1k(C·)|(xn)n,θ

(t)
))

= un,k

(
τ
(t)
·,k

)
,

where τ
(t)
n,k = PCn|Xn,Θ(k|xn,θ(t)). Then, the M-step consists in maximizing the

expected log-posterior Q with respect to θ = (pn,α). We only consider optimization
with respect to pn which is independent from the optimization with respect to α.
To obtain the update rule for pn with first add the Lagrange multiplier associated

32

to the constraint
∑

k pn,k = 1 and compute the partial derivative with respect to
pn,k. Therefore,

∀(n, k) ∈ {1, . . . , N} × {1, . . . , K},
un,k

(
τ
(t)
·,k

)
pn,k

+ λn = 0,

which leads to the update rule (26) by setting λn such that
∑

k pn,k = 1.

Proof of Proposition 3. The proof is similar to the proof of Proposition 1 and starts
by writing the log-posterior of each layers and then taking the conditional expecta-
tion knowing all the other features and previous parameter estimations at all layers

E
(
B

(h)
n,k − 1 + 1k(C(h)

n)
∣∣∣(xn)n,θ

(t)
)

= E
(
u
(h)
n,k

(
1k(C(1)

·), . . . ,1k(C(H)
·)

) ∣∣∣ ((x(h)n)n,θ
(t,h)
)
h

)
= u

(h)
n,k

(
E
((
1k(C(1)

·), . . . ,1k(C(H)
·)

) ∣∣∣ ((x(h)n)n,θ
(t,h)
)
h

))
= u

(h)
n,k(τ

(t,1)
·,k , . . . , τ

(t,H)
·,k).

We conclude by using Lagrange multipliers as in the proof of Proposition 1.

Appendix C. Proof of propositions 2

Proof that the EM algorithm increases the log-posterior of mixture models. First, let
us recall why each iteration of the EM algorithm applied to a general probabilistic
mixture models as presented in the introduction increases the (incomplete) log-
likelihood. At iteration t+ 1, the E-step of the algorithm consists in computing

Q(θ;θ(t), (xn)n) = EC|X,θ(t)

(
ln P(Xn)n,(Cn)n|θ((xn)n, (Cn)n|θ)

)
,

while the M-step maximizes Q(θ;θ(t), (xn)n) with respect to θ. For clarity purposes,
we drop probability subscripts in the following. First, using the chain rule, we have
P((xn)n, (Cn)n|θ) = P((Cn)n|(xn)n,θ)P((xn)n|θ), so for all θ,

ln(P((xn)n|θ)) = ln(P((xn)n, (Cn)n|θ))− ln(P((Cn)n|(xn)n,θ)).

Then,

EC|X,θ(t)(ln(P((xn)n|θ))) = EC|X,θ(t)(ln(P((xn)n, (Cn)n|θ)))− EC|X,θ(t)(ln(P((Cn)n|(xn)n,θ))

ln(P((xn)n|θ)) = Q(θ;θ(t), (xn)n) +H
(

(Cn)n|(xn)n,θ
(t), (Cn)n|(xn)n,θ

)
,

where H(p, q) is the cross-entropy of the probability distributions p and q. The
previous equation holds for all parameters θ so, by subtracting the same equation
for θ = θ(t), we obtain

ln(P((xn)n|θ))− ln(P((xn)n|θ(t))) = Q(θ;θ(t), (xn)n)−Q(θ(t);θ(t), (xn)n)+

H
(

(Cn)n|(xn)n,θ
(t), (Cn)n|(xn)n,θ

)
−H

(
(Cn)n|(xn)n,θ

(t), (Cn)n|(xn)n,θ
(t)
)
.

The Gibbs’ inequality [41] states that for all probability distributions p and q,
H(p, q) > H(p, p), so

ln(P((xn)n|θ))− ln(P((xn)n|θ(t))) > Q(θ;θ(t), (xn)n)−Q(θ(t);θ(t), (xn)n).

33

At iteration t + 1; the M-step consists in defining θ(t+1) such that it maximizes
Q(θ;θ(t), (xn)n). Therefore,

ln(P((xn)n|θ(t)))− ln(P((xn)n|θt)) > 0.

Proof that EM algorithm increases the log-posterior of our models. Similarly, in our
framework, each iteration the EM-algorithm applied to the complete log-posterior
increases the incomplete log-posterior. θ denotes the model parameters a, (pn)n. At
iteration t+ 1, the E-step computes

Q(θ;θ(t), (xn)n) = EC,B|X,θ(t)

(
lnPθ|X,C,B(θ|(xn)n, (Cn)n, (Bn)n)

)
= EC,B|X,θ(t) (ln (PX,C,B,θ((xn)n, (Cn)n, (Bn)n,θ))− ln (PX,C,B((xn)n, (Cn)n, (Bn)n))) ,

and the M-step maximizes Q(θ;θ(t), (xn)n) with respect to θ. Once again, we drop
the probability subscripts for clarity purposes and using the chain rule, we have

P((xn)n, (Cn)n, (Bn)n,θ) = P((Cn)n, (Bn)n|(xn)n,θ)P(θ|(xn)n)P((xn)n),

so for all θ,

lnP(θ|(xn)n) = ln (P((xn)n, (Cn)n, (Bn)n,θ))−ln (P((Cn)n, (Bn)n|(xn)n,θ))−ln (P((xn)n)) .

Then,

EC,B|X,θ(t)(lnP(θ|(xn)n)) = EC,B|X,θ(t)(lnP((xn)n, (Cn)n, (Bn)n,θ))

− EC,B|X,θ(t)(lnP((Cn)n, (Bn)n|(xn)n,θ))− EC,B|X,θ(t)(lnP((xn)n))

lnP(θ|(xn)n) =Q(θ;θ(t), (xn)n) + EC,B|X,θ(t) (ln (PX,C,B((xn)n, (Cn)n, (Bn)n)))

+H((Cn)n, (Bn)n|(xn)n,θ
(t), (Cn)n, (Bn)n|(xn)n,θ)− lnP((xn)n),

As before, by subtracting the same equation for θ = θ(t) and thanks to the Gibbs’
inequality, we obtain

lnP(θ|(xn)n)− lnP(θ(t)|(xn)n) > Q(θ;θ(t), (xn)n)−Q(θ(t);θ(t), (xn)n).

The M-step at iteration t + 1 consists in defining θ(t+1) such that it maximizes
Q(θ;θ(t), (xn)n). Therefore,

lnP(θ(t+1)|(xn)n)− lnP(θ(t)|(xn)n) > 0.

Note that the proof is similar for our model combining mixture models.

34

	1 Introduction
	1.1 Probabilistic mixture models and Expectation-Maximization
	1.2 Previous work and contributions

	2 Linear Update of the Mixing Probabilities
	2.1 Single mixture model
	2.2 Combining mixture models

	3 Numerical Experiments
	3.1 Application to Synthetic Image Segmentation
	3.1.1 Single Mixture
	3.1.2 Hierarchical Mixtures

	3.2 Application to Natural Image Segmentation
	3.2.1 Single Mixture
	3.2.2 Multiple Mixtures

	3.3 Discussion

	Appendix A Supplementary Figures
	Appendix B Proof of propositions 1 and 3
	Appendix C Proof of propositions 2

