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ABSTRACT

Perception is often viewed as a process that transforms physical variables, ex-
ternal to an observer, into internal psychological variables. Such a process can
be modeled by a function coined perceptual scale. The perceptual scale can be
deduced from psychophysical measurements that consist in comparing the relative
differences between stimuli (i.e. difference scaling experiments). However, this
approach is often overlooked by the modeling and experimentation communities.
Here, we demonstrate the value of measuring the perceptual scale of classical
(spatial frequency, orientation) and less classical physical variables (interpolation
between textures) by embedding it in recent probabilistic modeling of perception.
First, we show that the assumption that an observer has an internal representation
of univariate parameters such as spatial frequency or orientation while stimuli are
high-dimensional does not lead to contradictory predictions when following the
theoretical framework. Second, we show that the measured perceptual scale corre-
sponds to the transduction function hypothesized in this framework. In particular,
we demonstrate that it is related to the Fisher information of the generative model
that underlies perception and we test the predictions given by the generative model
of different stimuli in a set a of difference scaling experiments. Our main conclu-
sion is that the perceptual scale is mostly driven by the stimulus power spectrum.
Finally, we propose that this measure of perceptual scale is a way to push further
the notion of perceptual distances by estimating the perceptual geometry of images
i.e. the path between images instead of simply the distance between those.

1 INTRODUCTION

Difference Scaling Difference scaling methods allow us to measure the relative perceptual differ-
ences of multiple stimuli in human observers. Such methods have been used as early as in the 1960s
to measure the relative differences of perceived color, contrast or loudness (see Maloney & Yang
(2003) and references therein). This is only at the beginning of our century that a fitting method,
called Maximum Likelihood Difference Scaling (MLDS), was developed (Maloney & Yang, 2003;
Knoblauch & Maloney, 2008) to infer the function that maps the physical to the perceptual space.
This function is called perceptual scale. The critical assumption behind the fitting methods dates back
to Thurstone’s law of comparative judgment (see case V Thurstone (1927)): the difference between
two values along a psychological dimension is corrupted by noise that has a constant variance. The
perceptual scale informs us about how a stimulus is perceived when modified along a continuous
physical scale (e.g. color, contrast, . . . ). When the slope of the perceptual scale is steep, perception
changes rapidly with small physical changes i.e. the observer is highly sensitive to physical vari-
ations. When the slope is shallow, perception is stable even for large physical variations i.e. the
observer is weakly sensitive to physical variations. Recently, the MLDS method has been used to
measure the perceptual scales of surface texture (Emrith et al., 2010), watercolor effect (Devinck &
Knoblauch, 2012), slant-from-texture (Aguilar et al., 2017), lightness (Aguilar & Maertens, 2020) or
probabilities (Zhang et al., 2020). However, perceptual scales of more fundamental physical variables
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such as orientation and spatial frequency have not been measured nor related to existing probabilistic
theory of perception. Additionally, while relations between standard Two-alternative Forced Choice
(2AFC) measurements and perceptual scales have been studied (Aguilar et al., 2017), it was a theory
of perception that was previously described (Wei & Stocker, 2017) that has been used to derive
predictions.

Probabilistic modeling of perception Thurstone’s law of comparative judgment is a first brick
in the history of probabilistic modeling of perception (Thurstone, 1927). Indeed, it introduced the
incipient concept of random variable (Chebyshev, 1867; Kolmogoroff, 1933) in psychophysics. Then,
the development of computer science and information theory had major impact in perception studies,
bringing concepts such as redundancy reduction and information maximization (Attneave, 1954;
Barlow et al., 1961). More specifically, when applied to texture perception, these concepts led to
Julesz’ hypothesis that perception of textures is statistical (Victor et al., 2017) i.e. textures with
similar statistics are indistinguishable. Later on, together with advances in image processing, Julesz’
hypothesis led to modern texture synthesis algorithms (Portilla & Simoncelli, 2000; Gatys et al.,
2015). In parallel, a core theorem of probabilities, namely Bayes rule, was found to efficiently
predicts human perceptual behaviors (Knill & Richards, 1996). Further works have been dedicated to
solve the inverse problem of identifying observers’ prior that best explain their perception (Stocker
& Simoncelli, 2006; Girshick et al., 2011; Vacher et al., 2018; Manning et al., 2023). Inspired by
neural population coding models, an optimal observer theory is now described in details by Wei &
Stocker (2017). The main consequence of this theory is the existence of a simple relation between
perceptual bias and sensitivity. Yet, the theory is limited to a hypothesized scalar perceptual variable
while it is established that only part of the neurons of the primary visual cortex is tuned to scalar
variables such as spatial and temporal frequencies or orientation (Olshausen & Field, 2005). In
higher visual areas, it is more and more difficult to identify scalar variables that uniquely drive
single neurons as they respond to increasingly complex patterns (Bashivan et al., 2019). In some
previous work, Wainwright (Wainwright, 1999) have used higher dimensional natural image statistics
(auto-correlation and power spectrum) to explain various psychophysical observations. Though, it is
unclear how this approach relates to the univariate Bayesian framework.

Fisher information in neural populations The theory behind the work of Wei & Stocker (2017)
is largely inspired by previous work on neural population coding (Brunel & Nadal, 1998). In this
and subsequent works (Yarrow et al., 2012; Kanitscheider et al., 2015; Bethge et al., 2002; Wei &
Stocker, 2016), it is often ultimately assumed that neurons are Poisson firing neurons parameterized
by the tuning curve of a scalar variable. As stated previously, it is a quite restrictive framework as all
neurons are not tuned to a scalar variable (Olshausen & Field, 2005). By applying this framework
to perception, Wei and Stocker remove these unnecessary assumptions. They derive the relation
between perceptual bias and sensitivity which at its core comes from the relation between Fisher
information and prior under the optimal coding assumption (Brunel & Nadal, 1998)

PS(s) ∝
√
I(s). (1)

Fisher information is used to quantify the variance of a stimulus estimator from a neural population
encoding (Cramer-Rao lower bound). In contrast, priors are introduced in observer models to explain
perceptual biases. Therefore, Equation (1) links neural population models and perceptual models.
However, less attention is dedicated to the underlying encoding model, where a stimulus variable S is
non-linearly related to an internal measurement M through a function ψ plus an additive Gaussian
noise N with constant variance,

M = ψ(S) +N. (2)
Interestingly, such an encoding model is very similar to the assumptions behind the observer model
underlying the MLDS method. However, the precise nature of these internal measurements has so far
remained abstract.

Perceptual distance A perceptual distance is a score of image quality used to quantify and to
compare the performances of image restoration or generation methods. Perceptual distances have
been introduced to overcome the limitation of the Signal-to-Noise Ratio (also known as SNR).
Indeed, images with similar SNR could vary subjectively in quality when presented to human
observers (Wang et al., 2004). The Structural SIMilarity index (SSIM) is a score that is popular to
provide a better account of perceptual similarity as compared to SNR. Since then, variations of SSIM

2



have been proposed to more specific purposes such as estimating photo retouching (Kee & Farid,
2011). However, these scores require to compare the image to be rated to a reference image. In recent
years, the success of deep generative modeling have led to the emergence of new scores such as the
Inception score (Salimans et al., 2016) or the Fréchet Inception Distance (FID) (Heusel et al., 2017).
These scores have in common that they compare the generated image distribution to the true empirical
image distribution instead of a generated image to a reference image. In addition, they are based on
Deep Neural Network (DNN) features. Overall, it has been shown that such DNN features-based
scores are better aligned with human perception than SSIM or SNR for example (Zhang et al.,
2018). One possible explanation is that DNN are able to capture high-order image statistics and
that as hypothesized in vision, our perception is deeply related to image statistics (see Hepburn
et al. (2022) and references in previous paragraphs). Yet, these coined perceptual distances are not
exempt of limitations as they could be subject to bias when classes specific features are present or
not (Kynkäänniemi et al., 2023). Overcoming these biases will likely require to move away from
training by measuring higher-order statistics on the image directly without relying on some learned
or random filters (Amir & Weiss, 2021). One other limitation of perceptual distances is that they do
not provide any information about how well a model has captured the perceptual geometry of images.
Providing a full account of perceptual geometry is more demanding, it requires to compare the path
when moving from one image to another and not only their distance along this path.

Contributions Our work brings several contributions to overcome the limitations introduced above.
First, we explain that a convergence theorem of discrete spot noises is a way to resolve the tension
between univariate Bayesian theories of perception (Wei & Stocker, 2017) and the high dimensionality
of images (Wainwright, 1999). Second, we show that the function ψ, introduced in Equation 2, can
be interpreted as the perceptual scale as measured by a difference scaling experiment. Then, we
demonstrate again that this function ψ can be predicted from the Fisher information of the stimulus
when using the true distribution of the noisy internal stimulus representation knowing the presented
stimulus i.e. the distribution of the measurements M that we give explicitly. Third, we propose
to go further in exploring perceptual distances by estimating how well the geometry of natural
images captured by models matches the perceptual geometry. For this purpose, we empirically
test the prediction given by the Fisher information of Gaussian vectors and processes in a series of
experiments (code and data, texture interpolation code1) involving stochastic stimuli characterized
by their power spectrum or their higher-order statistics captured by VGG-19 (Gatys et al., 2015). In
particular, we collapse the high dimensionality of these statistics by interpolating between single
textures (Vacher et al., 2020) and we measure the corresponding perceptual scale when going from
one texture to another. Finally, we propose a score to quantify the mismatch between the predicted
and the measured perceptual scales.

Notations Unless stated differently, upper case letters (e.g. X) are random variables and lower
case letters (e.g. x) are samples or realizations of those random variables. The probability density at
X = x is denoted PX(x). Similarly, the conditional probability density at X = x knowing Y = y is
donoted PX|Y (x, y). The set S = [sinit, sfinal] is the stimulus segment.

2 METHODS

2.1 STOCHASTIC VISUAL STIMULATION

We recall some theoretical results about the artificial textures we use in the current work. Firstly,
we use textures that are stationary Gaussian Random Fields (GRFs) fully characterized by their
scalar mean and their auto-correlation function (or equivalently their power spectrum i.e. the auto-
correlation Fourier transform). Interestingly, such GRFs can be seen as the limit of high intensity
discrete spot noises. This result allows one to relate the densities of local image features such as
orientation and scales to the power spectrum of the image (seen as a GRF). In summary, it provides a
link between scalar densities and the high-dimensional Gaussian distribution of the image. We will
see in later sections that this result leads both approach to similar predictions for perceptual scales.
Secondly, we use naturalistic textures that are obtained by imposing high-order and high-dimensional

1https://github.com/JonathanVacher/perceptual_metric, https://github.com/
JonathanVacher/texture-interpolation
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statistics obtained using VGG-19. However, the result mentioned above and detailed below does not
hold for naturalistic textures. It is unknown at this stage if similar results could be obtained with
some feature under some (non-linear) transformation.

Asymptotic Discrete Spot Noise Let ξ0 = (1, 0). Let gσ be a Gabor function defined for all σ > 0
and for all x ∈ R2 by

gσ(x) =
1

2π
cos(x · ξ0)e−

σ2

2 ||x||2 .

In addition, let φz,θ be a scaled rotation defined for all (z, θ) ∈ R+ × [0, π] by

φz,θ(x) = zR−θ(x)

where Rθ is the rotation of angle θ. Now, let Fλ,σ be a discrete spot noise of intensity λ > 0 defined
as the following random field for all x ∈ R2

Fλ,σ(x) =
1√
λ

∑
k∈N

gσ(φZk,Θk
(x−Xk))

where (Xk, Zk,Θk)k∈N are iid random variables. Specifically (Xk)k∈N is a 2-D Poisson process of
intensity λ > 0 and (Zk,Θk)k∈N have densities (PZ ,PΘ).
Proposition 1 (Convergence and Power Spectrum). In the limit of infinite intensity (λ −→ +∞) and
pure wave (σ −→ 0), Fλ,σ converges towards a Gaussian field F with the following power spectrum
for all ξ ∈ R2,

γ̂(ξ) =
1

||ξ||2
PZ(||ξ||)PΘ(∠ξ)

where ξ = (||ξ|| cos(∠ξ), ||ξ|| sin(∠ξ)).

Proof. This is a special case of Proposition 2 in Vacher et al. (2018). The general result is Theorem
3.1 in Galerne (2010).

In practice, the distribution PZ and PΘ are parametrized by (Z0,ΣZ) and (Θ0,ΣΘ) respectively.

By providing a relation between local feature statistics (orientation and scale) and the image power
spectrum, Proposition 1 will allow us to justify the common assumption made when modeling
psychophysical data that is the feature of interest, and is directly used by the observer instead of the
image (Knill & Richards, 1996; Stocker & Simoncelli, 2006; Girshick et al., 2011). See Section 2.3.

Interpolation of Naturalistic Textures Even though for experimental purposes the GRFs described
above can be parameterized by just a few scalar variables (Vacher et al., 2018), naturalistic textures
depend on the statistics of high-dimensional features extracted at different layers of VGG-19 (Gatys
et al., 2015; Vacher et al., 2020). Previous algorithms widely used in vision studies (Portilla &
Simoncelli, 2000; Vacher & Briand, 2021) were using fewer parameters, but the number was still
too large to derive clear and interpretable results (Okazawa et al., 2015). One way to efficiently
collapse the dimension parameterizing those textures is to use interpolation (Vacher et al., 2020). As a
consequence the texture features of an interpolation of textures extracted at layers k are interpreted as
realizations of a random variable Ak(s) with mean µW (s) and covariance ΣW (s) (see Appendix C).
Assuming Gaussiannity, it will become possible to derive predictions for the perceptual scale measured
along the interpolation path.

2.2 THURSTONE SCALE, FISHER INFORMATION AND MLDS

First, we define more precisely the encoding model given in Equation 2 as follows

M = R+N where R = ψ(S) with ψ : S → S. (3)

We use the above description to highlight the fact that M , R and N are random variables that are
internal to the observer while S is external to them, it is an environment variable, an external stimulus.
In practice, the noise N is often assumed to be Gaussian with variance σ2. It corrupts the internal
representation of the stimulus R to give what we call the internal measurement M . Then, we define
Fisher information for two abstracts unidimensional random variables.

4



Definition 1 (One-dimensional Fisher information). Let X and Y be two random variables defined
respectively on two abstract spaces X and Y and let PX|Y be the conditional density of X knowing
Y . The Fisher information carried by X about Y is a function I : Y −→ R defined for all y ∈ Y by

IY (y) = EX|Y

((
∂ log(PX|Y )

∂y
(X, y)

)2
)
. (4)

In statistics, Fisher information is used as a upper bound of the precision of an estimation (see
Cramér-Rao bound). This is also how we interpret it for an observer, namely the maximal precision
of their estimation of a stimulus S.

The precise definition given above is helpful to realize that the Fisher information carried by M about
S (IS) is different from the one carried by M about R (IR). We can go one step further though, and
establish the following relation between those two

IS(s) = ψ′(s)2IR(ψ(s)). (5)

A reformulation of Thurstone law of comparative judgment (Thurstone, 1927) is to assume that
the Fisher information of an observer’s internal representation IR is constant. It is not so obvious
to understand why this assumption is relevant. The idea is that an observer has only access to her
internal states, she never observes any realization of an external stimulus S. Every external variable
is transformed to an internal one through the psychological function ψ. Therefore, without any
knowledge about the external world, a fair assumption is to allocate equal resources to every possible
internal state in order to be equally precise in our estimates of different states (without knowing to
what they correspond to in the external world). This assumption is also equivalent to assuming that
internal observer’s noise (a common notion used in psychophysics) is constant. If the internal Fisher
information is constant we can now express the psychological function simply in terms of external
Fisher information. This is summarized in the following proposition.
Proposition 2. Assume Equation (3), the internal Fisher information IR is constant if and only if for
all s ∈ S the psychological function ψ verifies

ψ(s) ∝
∫ s

sinit

√
IS(t)dt. (6)

Proof. See Appendix D.

Relation to the MLDS observer model. In the MLDS framework, an observer has to judge
which pair of stimuli is more similar to another. Assuming three stimuli (si, sj , sk), those are
transformed through the psychological scale ψ and the observer responds by comparing the difference
of differences between the pairs di,j,k = |ψ(si)−ψ(sj)|−|ψ(sj)−ψ(sk)|. This difference is assumed
to be corrupted by an internal noise Nmlds of constant variance σ2

mlds i.e. ∆i,j,k = di,j,k + Nmlds.
Those assumptions are sufficient to recover an estimate of ψ (Knoblauch & Maloney, 2008). In
addition, it is often assumed that there is no specific internal ordering of the variables so that the
difference di,j,k can be written without absolute value. In that case, assuming the encoding model (3)
is enough to recover the MLDS observer model, e have the following relation between the noise
variances σ2

mlds = 4σ2.

2.3 FISHER INFORMATION CARRIED BY THE IMAGE vs BY THE LOCAL FEATURES

In the previous section, we have introduce an observer model based on an abstract random internal
measurement M . It is often unclear what those measurements are. Ideally inspired by neurophysiol-
ogy, the measurements are responses of neurons to the image often modeled by Linear/Non-linear
operations, even though those modeling stages are often dropped in perceptual studies. In the case of
GRFs parameterized by spatial frequency (or scale) and orientation distributions, it is often accepted
to assume that the measurements are samples of an appropriate distribution e.g. a Log-Normal
distribution for the spatial frequency or a Von-Mises distribution for the orientation. Using the
notation of the previous section, these cases correspond to measurement M = Z with stimulus
S = Z0 and measurement M = Θ with stimuli S = Θ0. We will see that in both cases this is
equivalent to consider that measurements are the image itself M = F with S = Z0 or S = Θ0. This
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Figure 1: Texture samples and predicted perceptual scales for the spatial frequency mode (z0), the
spatial frequency bandwidth (bz) and the orientation bandwidth (σθ).
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Figure 2: Texture samples and predicted perceptual scales for various interpolation between arbitrary
textures. Green corresponds to the early sensitivity group (i.e. shallow-to-steep slope). Orange
corresponds to the late sensitivity group (i.e. steep-to-shallow slope). Purple corresponds to conflicting
prediction across VGG-19 layers.

is because Fisher information is given in closed-form and that perceptual scale can be predicted using
Proposition 2. Similar results hold for S = BZ and S = Σθ (note that (Z0, BZ) and (Θ0,ΣΘ) are
parameters of PZ and PΘ introduced in Section 2.1). The predictions are given in Figure 1.

Fisher Information of Log-Normal and Von-Mises Distributions We give the precise
parametrization and the corresponding Fisher information of the Log-Normal and Von-Mises distri-
butions in Appendix A.

Fisher Information of Parametric GRFs Now, we consider a GRF texture F with mean µ ∈
R and autocorrelation function γ (or equivalently power spectrum γ̂) parameterized by s ∈ S.
Mathematically, the texture can be expressed for all x ∈ R2 and s ∈ S, as

F (x, s) = µ+

∫
R2

k(x− y, s)dW (y)

where k(·, s) = F−1(
√
γ̂(·, s)) and W is a classical Wiener process.
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Proposition 3. The Fisher Information carried by F about S is

I(s) = 1

2

∫
R2

1

|γ̂(ξ, s)|2

∣∣∣∣∂γ̂(ξ, s)∂s

∣∣∣∣2 dξ = 1

2

∫
R2

∣∣∣∣∂ log(γ̂(ξ, s))∂s

∣∣∣∣2 dξ.
Proof. This is a specific case of Whittle formula (Whittle, 1953, Theorem 9).

We combine Proposition 3 with Proposition 1 using the Log-normal and the Von-Mises distributions
to express the power spectrum γ̂ parameterized by S = Z0, S = BZ , S = Θ0 or S = Σθ. Therefore,
the Fisher information carried by measurements M = F comes down to the Fisher information
carried by measurements M = Z (spatial frequency) or M = Θ (orientation) as described above
up to a multiplicative constant of 1/2. As a consequence both approaches lead to similar predictions
about the perceptual scales measured for these parameters.

Fisher Information of Parametric Gaussian Vectors In the case of interpolation between natural-
istic textures, we do not have a direct generative model of the texture conditionally on the interpolation
parameter s. Instead, the texture is generated using a gradient descent to impose the statistics of
VGG-19 features at multiples layers for which we have a generative model. Therefore, at layer k and
for s ∈ S the activation Ak(s) of texture Fk(s) is

Ak(s) = µk(s) + Σk(s)N with µk ∈ C1
(
S,Rdk

)
and Σk ∈ C1

(
S,R

dk×dk
)

where N ∼ N (0, Idk
) is a standard normal random vector and dk is the feature dimension of layer k.

Proposition 4. The Fisher Information carried by Ak about S is

I(s) = µ′
k(s)Σk(s)

−1µ′
k(s) +

1

2
Tr
(
Σk(s)

−1Σ′
k(s)Σk(s)

−1Σ′
k(s)

)
.

Proof. See Appendix B.

0.0 0.5 1.0
0.0

0.5

1.0
spatial freq.

human
theory

0.0 0.5 1.0

spatial freq. bandwidth

0.0 0.5 1.0

ori. bandwidth

Figure 3: Measured and predicted perceptual scales for the spatial
frequency mode (left), the spatial frequency bandwidth (middle)
and the orientation bandwidth (right).

As stated earlier in the manuscript,
no link can be made with inter-
pretable feature distributions as
it is the case for GRFs. Though,
precise expressions for µk and Σk

are available in close forms in the
Gaussian case as assumed here
(see Appendix C). In practice, the
feature activations are not Gaus-
sian (Vacher et al., 2020).

2.4 PREDICTIONS AND EXPERIMENTAL METHODS

The calculated Fisher informations together with Proposition 2 allows us to predict the perceptual
scales corresponding to the parameters described in the previous section. These predictions hold
under the assumed generative models for measurements.

Predictions In the case of GRFs textures, we recall that assuming that spatial frequency or orien-
tation are directly measured or that the image as a whole is measured makes no differences in the
prediction (see bottom-right of Figure 1). In the case of naturalistic textures, the measurements are
assumed to be the feature activations of the texture in VGG-19 at layer 2 to 5 (see bottom-right of
Figure 2). For the naturalistic, we alternatively propose that measurements are the single pixel gray
levels, the image itself (i.e. the power spectrum as for GRFs) or the wavelet activations.

Experimental Methods The experiment consists of trials where participants have to make a
similarity judgment. Participants are presented with 3 stimuli with parameters s1 < s2 < s3 and
are required to choose which of the two pairs with parameters (s1, s2) and (s2, s3) is the most
similar. We used four sets of textures (see Figure 1 and 2): (i) the first set consists of parameterized
artificial textures where we measured the perceptual scales of spatial frequency, spatial frequency
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0.0 0.5 1.0
0.0

0.5

1.0
pair01

human
theory

0.0 0.5 1.0

pair02

0.0 0.5 1.0

pair03

0.0 0.5 1.0

pair04

0.0 0.5 1.0

pair05

0.0 0.5 1.0
0.0

0.5

1.0
pair06

human
theory

0.0 0.5 1.0

pair07

0.0 0.5 1.0

pair08

0.0 0.5 1.0

pair09

0.0 0.5 1.0

pair10

Figure 4: Measured and predicted (auto-cor) perceptual scales for the early (top row) and late (bottom
row) sensitivity pairs.

bandwidth and orientation bandwidth (see Appendix E for details); (ii) the other three sets consist of
interpolations between arbitrary textures. A set of textures for which the perceptual scale corresponds
to an early sensitivity (i.e. steep-to-shallow slope, see top-left of Figure 2). Another one for
which the perceptual scale corresponds to late sensitivity (i.e. shallow-to-steep slope, see top-
right of Figure 2). And a last set for which the predictions are inconsistent from one layer of
VGG-19 to another (bottom-right of Figure 2). All stimuli had an average luminance of 128
(range [0, 255]) and an RMS contrast of 39.7. For each texture pair, we use 13 equally spaced
(δs = 0.083) interpolation weights. To ensure that stimulus comparisons are around the discrimination
threshold we only use triplets such that |s1,3 − s2| ≤ 3δs. For each texture pair, a group of 5
naive participants performed the experiment. Participants were recruited through the platform
prolific (https://www.prolific.com), performed the experiments online, and were paid
9£/hr. Monitor gamma was measured using a psychometric estimation and corrected to 1. The MLDS
model is described at the end of Section 2.2. The protocol was approved by the CER U–Paris (IRB
00012020–54).

3 RESULTS

3.1 ORIENTATION AND SPATIAL FREQUENCY

0.0 0.5 1.0
0.0

0.5

1.0
pair11

human
theory

0.0 0.5 1.0

pair12

Figure 5: Measured and predicted (auto-cor)
perceptual scales for the conflicting prediction
pairs.

The perception of spatial frequencies is well-known
in vision studies, its perceptual scale is expected to be
logarithmic. Such a scale is also predicted by Fisher
information as integrating the square-root (Proposi-
tion 2) of a squared inverse (Proposition 5) leads
to a logarithm. The measured perceptual scale of
the spatial frequency mode matches correctly this
prediction (left of Figure 3). The spatial frequency
and orientation bandwidths are less studied, the pre-
dictions are qualitatively the same as for the spatial
frequency mode (Proposition 2 and Proposition 6).
The Fisher information of the orientation bandwidth
is more complex but leads to a similar curve. The measured perceptual scale is more variable for the
orientation bandwidth (larger error bars) but is still in line with the prediction (predicted offset from
linear behavior is exaggerated, see right of Figure 3). In contrast, the measured perceptual scales
of spatial frequency bandwidth is approximately linear for low values while its gets supra-linear at
intermediate values and even saturate for the highest values (center of Figure 3).
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Figure 6: Prediction scores. (a) Intuition about score values when comparing two perceptual functions.
(b) Left : scores for each pair and for different predictions. Right : averaged scores for different
predictions with 99.7% confidence intervals.

3.2 INTERPOLATION BETWEEN NATURALISTIC TEXTURES

We present the perceptual scales measured for the different groups of natural textures in Figure 4
and 5. On these figures, the prediction given by the auto-correlation (i.e. when considering the
textures as GRFs) is shown. Predictions assuming alternative measurements (pixel, wavelet, and
VGG-19) are quantitatively compared in Figure 6 using the following Area Matching Score : AMS =∫ 1

0
sign(fm(x)−x)(fth(x)−x)/|fm(x)−x|dx where fm and fth are respectively the measured and predicted

scales. Intuition about score values is given in Figure 6a.

Early and Late Sensitivity For the set of early sensitivity texture pairs, measured perceptual scales
are inline with the predictions (Figure 4) in the sense that a linear (pair01, pair04-05) or a
supra-linear (pair02-03) perceptual scale is measured in all texture pairs. The same hold for the
set of late sensitivity texture pairs (Figure 4), but this time in the sense that a linear (pair06 and
pair08) or a sub-linear (pair07 and pair09-10) perceptual scale is measured in all texture
pairs. Such a result is also valid for the predictions based on alternative measurement assumptions as
shown in Figure 6 by the fact that all scores are positive for pair01-10.

Conflicting predictions For the set of textures with conflicting predictions (Figure 5), for both
texture pairs, we observe that the GRF measurement assumption predicts a late sensitivity while
the measured perceptual scale corresponds to an early sensitivity with a late saturation. Other
measurement assumptions are not providing better prediction as their score is either close to 0 or
negative. However, there is one exception for pair11 under the wavelet measurement assumption
which has a ideal score, close to 1 (up to score limitation, see Section 4).

Measurement Assumption Scores As previously stated, all assumptions predict correctly whether
the scale corresponds to late or early sensitivity (positive scores) except for the conflicting prediction
texture pairs. Note that pair05 has also a score close to 0 under all assumptions (though this might
be due to score limitation, see Section 4). On average, the GRF assumption is the best with an average
score (±99.7% CI) close to 1 (0.92± 0.69). The single pixel distribution assumption only predicts a
linear behavior and has therefore a score close to 0. In contrast, the wavelet and VGG-19 assumptions
often overestimate the early or late sensitivity (average scores above 1).

4 DISCUSSION AND CONCLUSION

In the case of GRFs, we have shown that the univariate assumption behind the Bayesian theories
of perception and the absence of this assumption (i.e. the observer is using all the information in
the image) lead to the same prediction for the perceptual scales of spatial frequencies, orientations
and their bandwidths. Such a result is due to the fact that these local feature distributions directly
appear in the power spectrum (the Fourier transform of the auto-correlation) of GRFs (Proposition 1)
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and to our second result that is the perceptual scale is related to the Fisher information of the feature
distribution (Proposition 2). In the case of naturalistic textures, it is unknown if such a result relating
a (non-linear) transform and some feature distribution holds. Therefore, it is necessary to make
new hypotheses about the measurements in order to predict the perceptual scale of an observer. We
tested this issue in a series of difference scaling experiments involving GRF and naturalistic textures.
Our main result is that the perceptual scale is mainly driven by the auto-correlation (or the power
spectrum). However, it does not perfectly explain the measured perceptual scales, and in particular, the
perceptual scale of pair11 appears to be driven by the wavelet representation. In addition, exploring
those assumptions would require to be able to interpolate between textures while maintaining some
measurements constant (e.g. interpolating between deep feature representations while maintaining a
constant power spectrum). Another highly interesting future directions is to compare the perceptual
scale to a neurometric scale, an equivalent scale but deduced from neurophysiological recordings as
the equivalent exists for the psychometric function (Newsome et al., 1989; Berens et al., 2011). Other
limitations lie in the MLDS method. Usually, running a difference scaling experiment requires to
know ahead of time an approximation of the observer’s sensitivity to the parameter that one would
like to test. Here, we have not estimated the sensitivity of each participant and, therefore, have not
adapted the stimuli accordingly. Instead, we have only tested the experiment ourselves and judged
that it was feasible. Yet, it seems that we were near the participants sensitivity because the raw data
do not show responses with very high or very low probabilities. All these questions demonstrate the
ambition of our approach and the work that remains to be done to understand, beyond perceptual
distance, perceptual metrics.

REPRODUCIBILITY STATEMENT

The reproducibility of our work will be ensured by the links provided to the data and code. Theoretical
results are supported by proofs or references to proof.

REFERENCES

Guillermo Aguilar and Marianne Maertens. Toward reliable measurements of perceptual scales in
multiple contexts. Journal of Vision, 20(4):19–19, 2020.

Guillermo Aguilar, Felix A Wichmann, and Marianne Maertens. Comparing sensitivity estimates
from mlds and forced-choice methods in a slant-from-texture experiment. Journal of Vision, 17(1):
37–37, 2017.

Dan Amir and Yair Weiss. Understanding and simplifying perceptual distances. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12226–12235, 2021.

Fred Attneave. Some informational aspects of visual perception. Psychological review, 61(3):183,
1954.

Horace B Barlow et al. Possible principles underlying the transformation of sensory messages.
Sensory communication, 1(01):217–233, 1961.

Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image
synthesis. Science, 364(6439):eaav9436, 2019.

Philipp Berens, Alexander S Ecker, Sebastian Gerwinn, Andreas S Tolias, and Matthias Bethge.
Reassessing optimal neural population codes with neurometric functions. Proceedings of the
National Academy of Sciences, 108(11):4423–4428, 2011.

Matthias Bethge, David Rotermund, and Klaus Pawelzik. Optimal short-term population coding:
When fisher information fails. Neural computation, 14(10):2317–2351, 2002.

Nicolas Brunel and Jean-Pierre Nadal. Mutual information, fisher information, and population coding.
Neural computation, 10(7):1731–1757, 1998.

PL Chebyshev. On mean values.[o srednikh velichinakh]. Matem. Sbornik, pp. 1–9, 1867.

10



Yongxin Chen, Tryphon T Georgiou, and Allen Tannenbaum. Optimal transport for gaussian mixture
models. IEEE Access, 7:6269–6278, 2018.

Frédéric Devinck and Kenneth Knoblauch. A common signal detection model accounts for both
perception and discrimination of the watercolor effect. Journal of Vision, 12(3):19–19, 2012.

Khemraj Emrith, MJ Chantler, PR Green, LT Maloney, and ADF Clarke. Measuring perceived
differences in surface texture due to changes in higher order statistics. JOSA A, 27(5):1232–1244,
2010.

Bruno Galerne. Stochastic image models and texture synthesis. PhD thesis, École normale supérieure
de Cachan-ENS Cachan, 2010.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convolutional neural
networks. Advances in neural information processing systems, 28, 2015.

Ahna R Girshick, Michael S Landy, and Eero P Simoncelli. Cardinal rules: visual orientation
perception reflects knowledge of environmental statistics. Nature neuroscience, 14(7):926–932,
2011.

Alexander Hepburn, Valero Laparra, Raul Santos-Rodriguez, Johannes Ballé, and Jesus Malo. On
the relation between statistical learning and perceptual distances. In 10th International Conference
on Learning Representations, ICLR 2022, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Ingmar Kanitscheider, Ruben Coen-Cagli, and Alexandre Pouget. Origin of information-limiting
noise correlations. Proceedings of the National Academy of Sciences, 112(50):E6973–E6982,
2015.

Eric Kee and Hany Farid. A perceptual metric for photo retouching. Proceedings of the National
Academy of Sciences, 108(50):19907–19912, 2011.

David C Knill and Whitman Richards. Perception as Bayesian inference. Cambridge University
Press, 1996.

Kenneth Knoblauch and Laurence T Maloney. Mlds: Maximum likelihood difference scaling in r.
Journal of Statistical Software, 25:1–26, 2008.

Andrey Kolmogoroff. Grundbegriffe der wahrscheinlichkeitsrechnung. Springer-Verlag Berlin
Heidelberg, 1933.

Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role
of imagenet classes in fréchet inception distance. In The Eleventh International Conference on
Learning Representations, 2023.

Jan R Magnus. The moments of products of quadratic forms in normal variables. Statistica Neer-
landica, 32(4):201–210, 1978. URL https://www.janmagnus.nl/papers/JRM003.
pdf.

Laurence T Maloney and Joong Nam Yang. Maximum likelihood difference scaling. Journal of
Vision, 3(8):5–5, 2003.

Tyler S Manning, Benjamin N Naecker, Iona R McLean, Bas Rokers, Jonathan W Pillow, and Emily A
Cooper. A general framework for inferring bayesian ideal observer models from psychophysical
data. eneuro, 10(1), 2023.

William T Newsome, Kenneth H Britten, and J Anthony Movshon. Neuronal correlates of a perceptual
decision. Nature, 341(6237):52–54, 1989.

Gouki Okazawa, Satohiro Tajima, and Hidehiko Komatsu. Image statistics underlying natural texture
selectivity of neurons in macaque v4. Proceedings of the National Academy of Sciences, 112(4):
E351–E360, 2015.

11

https://www.janmagnus.nl/papers/JRM003.pdf
https://www.janmagnus.nl/papers/JRM003.pdf


Bruno A Olshausen and David J Field. How close are we to understanding v1? Neural computation,
17(8):1665–1699, 2005.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

Javier Portilla and Eero P Simoncelli. A parametric texture model based on joint statistics of complex
wavelet coefficients. International journal of computer vision, 40:49–70, 2000.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Alan A Stocker and Eero P Simoncelli. Noise characteristics and prior expectations in human visual
speed perception. Nature neuroscience, 9(4):578–585, 2006.

Louis L Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.

Jonathan Vacher and Thibaud Briand. The Portilla-Simoncelli Texture Model: towards Understanding
the Early Visual Cortex. Image Processing On Line, 11:170–211, 2021. https://doi.org/
10.5201/ipol.2021.324.

Jonathan Vacher, Andrew Isaac Meso, Laurent U Perrinet, and Gabriel Peyré. Bayesian modeling of
motion perception using dynamical stochastic textures. Neural computation, 30(12):3355–3392,
2018.

Jonathan Vacher, Aida Davila, Adam Kohn, and Ruben Coen-Cagli. Texture interpolation for probing
visual perception. Advances in neural information processing systems, 33:22146–22157, 2020.

Jonathan D Victor, Mary M Conte, and Charles F Chubb. Textures as probes of visual processing.
Annual review of vision science, 3:275–296, 2017.

Martin J Wainwright. Visual adaptation as optimal information transmission. Vision research, 39(23):
3960–3974, 1999.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Xue-Xin Wei and Alan A Stocker. Mutual information, fisher information, and efficient coding.
Neural computation, 28(2):305–326, 2016.

Xue-Xin Wei and Alan A Stocker. Lawful relation between perceptual bias and discriminability.
Proceedings of the National Academy of Sciences, 114(38):10244–10249, 2017.

Peter Whittle. The analysis of multiple stationary time series. Journal of the Royal Statistical Society:
Series B (Methodological), 15(1):125–139, 1953.

Stuart Yarrow, Edward Challis, and Peggy Seriès. Fisher and shannon information in finite neural
populations. Neural computation, 24(7):1740–1780, 2012.

Hang Zhang, Xiangjuan Ren, and Laurence T Maloney. The bounded rationality of probability
distortion. Proceedings of the National Academy of Sciences, 117(36):22024–22034, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

12

https://doi.org/10.5201/ipol.2021.324
https://doi.org/10.5201/ipol.2021.324


A FISHER INFORMATION OF LOG-NORMAL AND VON-MISES RANDOM
VARIABLES

A random variable Z follows a log-normal distribution (Z ∼ LN (z0, bZ)) if it has the following
density defined for all z > 0 by

PZ(z; z0, bZ) =
2

zbZ
√

ln(2)π
exp

−
4
(
ln
(

z
z0

)
− ln(2)

8 b2Z

)2
ln(2)b2Z


where z0 is the mode and bZ is the octave bandwidth of the density. A random variable Θ follows a
Von-Mises distribution (Θ ∼ VM(θ0, σΘ)) if it has the following density defined for all θ ∈ [0, π]
by

PΘ(θ; θ0, σΘ) =
1

πB0(1/4σ2
Θ)

exp

(
cos (2(θ − θ0))

4σ2
Θ

)
.

Proposition 5. Let Z ∼ LN (z0, bZ). The Fisher Informations carried by Z about respectively Z0

and BZ are

I(z0) =
8

z20b
2
Z ln(2)

and I(bZ) =
ln(2)

2

(
1 +

4

b2z ln(2)

)
Proposition 6. Let Θ ∼ VM(θ0, σΘ). The Fisher Informations carried by Θ about respectively Θ0

and ΣΘ are

I(θ0) =
1

σ2
Θ

B1(1/4σ2
Θ)

B0(1/4σ2
Θ)

and I(σΘ) =
1

4σ6
Θ

(
1− B1(1/4σ2

Θ)

B0(1/4σ2
Θ)

(
4σ2

Θ +
B1(1/4σ2

Θ)

B0(1/4σ2
Θ)

))

B FISHER INFORMATION OF PARAMETRIC GAUSSIAN VECTOR

Proof of Proposition 4. We start by reminding the following calculus results (Petersen et al., 2008):

(i) ∇ log (|A|) =
(
A−1

)T
,

(ii) dA−1 = −A−1dAA−1.

The log of PX|S is

log(PX|S(x|s)) = −1

2
log(2π)− 1

2
log(|Σ(s)|)− 1

2
(x− µ(s))TΣ(s)−1(x− µ(s)).

Then,
∂ log(PX|S)

∂s
(x, s) =− 1

2
Tr(Σ(s)−1Σ′(s))− 1

2
(x− µ(s))T

(
Σ(s)−1

)′
(x− µ(s))

+ (x− µ(s))TΣ(s)−1µ′(s).

Then, (
∂ log(PX|S)

∂s
(x, s)

)2

= C1 + C2 + C3 + C4 + C5 + C6

where

C1 =
1

4
Tr(Σ(s)−1Σ′(s))2,

C2 =
1

4

(
(x− µ(s))T

(
Σ(s)−1

)′
(x− µ(s))

)2
,

C3 =
(
(x− µ(s))TΣ(s)−1µ′(s)

)2
,

C4 =
1

2
Tr
(
Σ(s)−1Σ′(s)

)
(x− µ(s))T

(
Σ(s)−1

)′
(x− µ(s)),

C5 = −Tr
(
Σ(s)−1Σ′(s)

)
(x− µ(s))TΣ(s)−1µ′(s),

C6 = −(x− µ(s))TΣ(s)−1µ′(s)(x− µ(s))T
(
Σ(s)−1

)′
(x− µ(s)).
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First, we observe that E(C1) = C1 and that E (C5) = E (C6) = 0 (odd central moments).
Then, following (ii), we have (

Σ(s)−1
)′

= −Σ(s)−1Σ′(s)Σ(s)−1.

Hence,

E
(
(x− µ(s))T

(
Σ(s)−1

)′
(x− µ(s))

)
= −E

(
(x− µ(s))TΣ(s)−1Σ′(s)Σ(s)−1(x− µ(s))

)
= −E

((√
Σ′(s)Σ(s)−1(x− µ(s))

)T (√
Σ′(s)Σ(s)−1(x− µ(s))

))
= −Tr(Σ(s)−1Σ′(s)).

[Note : think about the covariance of
√
Σ′(s)Σ(s)−1(x− µ(s)) or see Magnus (1978).]

Therefore, the expectation of C4 is

E(C4) = −1

2
Tr(Σ(s)−1Σ′(s))2.

The expectation of C2 is the second order moment of a quadratic form (see Magnus (1978)). Thus,

E(C2) =
1

4
Tr(Σ(s)−1Σ′(s))2 +

1

2
Tr(Σ(s)−1Σ′(s)Σ(s)−1Σ′(s)).

We can now deal with the expectation of the last term C3,

E(C3) = E
((

(x− µ(s))TΣ(s)−1µ′(s)
)2)

= E
(
(x− µ(s))TΣ(s)−1µ′(s)(x− µ(s))TΣ(s)−1µ′(s)

)
= E

(
µ′(s)TΣ(s)−1(x− µ(s))(x− µ(s))TΣ(s)−1µ′(s)

)
= µ′(s)TΣ(s)−1E

(
(x− µ(s))(x− µ(s))T

)
Σ(s)−1µ′(s) = µ′(s)TΣ(s)−1µ′(s).

Summing all the expectations leads to the result.

C MEAN AND COVARIANCE OF A WASSERSTEIN BARYCENTER

Proposition 7 (Wasserstein Barycenter of Gaussian Distributions). Let X0 ∼ N (µ0,Σ0) and
X1 ∼ N (µ1,Σ1) be two Gaussian random variables. The Wasserstein interpolation between PX0

and PX1
is defined as

Ps = argmin
P∈P(PX0

,PX1
)

(1− s)W2(PX0
,P)2 + sW2(PX1

,P)2

where P(PX0 ,PX1) is the set of probability densities with marginals PX0 and PX1 and where

W2(PX ,PY )
2 = inf

X∼PX ,Y∼PY

E
(
||X − Y ||2

)
is the Wasserstein distance between PX and PY . The probability distribution Ps is Gaussian with
mean µW (s) = (1− s)µX0

+ sµX1
and covariance

ΣW (s) = Σ
−1/2
X0

(
(1− s)ΣX0

+ s
(
Σ

1/2
X0

ΣX1
Σ

1/2
X0

)1/2)2

Σ
−1/2
X0

.

Proof. See (Chen et al., 2018).

Corollary 1. Let Xs ∼ N (µW (s),ΣW (s)) where ((µW (s),ΣW (s))) are defined in Proposition 7,
then the Fisher information is given by

I(s) = (µX1
− µX0

)TΣWB(s)
−1(µX1

− µX0
)

+
1

2
Tr
(
ΣWB(s)

−1Σ′
WB(s)ΣWB(s)

−1Σ′
WB(s)

)
(7)

where Σ′
WB(s) = 2s(ΣX0

+ΣX1
−Q0 −Q1) +Q1 +Q2 − 2ΣX1

with

Q0 = Σ
1/2
X0

(
Σ

1/2
X0

ΣX1
Σ

1/2
X0

)
Σ

−1/2
X0

and Q1 = Σ
−1/2
X0

(
Σ

1/2
X0

ΣX1
Σ

1/2
X0

)
Σ

1/2
X1
.

Proof. Combine Proposition 4 and Proposition 7.
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D PERCEPTUAL SCALE AND FISHER INFORMATION

Proof of Proposition 2. One has PM |S(m, s) = PM |R(m,ψ(s)) which implies that

∂ log(PM |S)

∂s
(m, s) = ψ′(s)

∂ log(PM |R)

∂s
(m,ψ(s)).

Therefore, by squaring this last equation and taking its expectation with respect to M we obtain
Equation (5). Then, taking the square root and integrating lead to the result.

E EXPERIMENTAL DETAILS

For the GRF textures we used the following parameters (see distributions in Appendix A):

• Spatial freq. mode (z0) : [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5],

• Spatial freq. bandwidth (bZ ) : [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25],

• Orientation bandwidth (σΘ) : [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5].

The code to generate these stimuli is available code and data2.

For the naturalistic interpolation of textures we use the natural textures available at the address
given above and using the following texture interpolation code3. The interpolation parameters used
are given in the main text (see Vacher et al. (2020) or Proposition 7 for the interpolation weight
definition).

2https://github.com/JonathanVacher/perceptual_metric
3https://github.com/JonathanVacher/texture-interpolation
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