PhD Defense

I defended my PhD on January the 18th in Paris Dauphine University ! You can find the manuscript here and the slides here.

Finally a Doctor !


The goal of this thesis is to propose a mathematical model of visual stimulations in order to finely analyze experimental data in psychophysics and electrophysiology. More precisely, it is necessary to develop a set of dynamic, stochastic and parametric stimulations in order to exploit data analysis techniques from Bayesian statistics and machine learning. This problem is important to understand the visual system capacity to integrate and discriminate between stimuli. In particular, the measures performed at different scales (neurons, neural population, cognition) allow to study the particular sensitivities of neurons, their functional organization and their impact on decision making. To this purpose, we propose a set of theoretical, numerical and experimental contributions organized around three principal axes: (1) a Gaussian dynamic texture synthesis model specially crafted to probe vision; (2) a Bayesian observer model that accounts for the positive effect of spatial frequency over speed perception; (3) the use of machine learning techniques to analyze voltage sensitive dye optical imaging and extracellular data. This work, at the crossroads of neurosciences, psychophysics and mathematics is the fruit of several interdisciplinary collaborations.

© 2019. All rights reserved.

Powered by Hydejack v8.4.0